2022-2023學年江西名校學術聯盟數學高三第一學期期末考試試題含解析_第1頁
2022-2023學年江西名校學術聯盟數學高三第一學期期末考試試題含解析_第2頁
2022-2023學年江西名校學術聯盟數學高三第一學期期末考試試題含解析_第3頁
2022-2023學年江西名校學術聯盟數學高三第一學期期末考試試題含解析_第4頁
2022-2023學年江西名校學術聯盟數學高三第一學期期末考試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.公比為2的等比數列中存在兩項,,滿足,則的最小值為()A. B. C. D.2.已知,則下列關系正確的是()A. B. C. D.3.若復數(是虛數單位),則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.要得到函數的圖象,只需將函數的圖象上所有點的()A.橫坐標縮短到原來的(縱坐標不變),再向左平移個單位長度B.橫坐標縮短到原來的(縱坐標不變),再向右平移個單位長度C.橫坐標伸長到原來的2倍(縱坐標不變),再向左平移個單位長度D.橫坐標伸長到原來的2倍(縱坐標不變),再向右平移個單位長度5.已知函數,若,則等于()A.-3 B.-1 C.3 D.06.已知非零向量滿足,若夾角的余弦值為,且,則實數的值為()A. B. C.或 D.7.《九章算術》是我國古代數學名著,書中有如下問題:“今有勾六步,股八步,問勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長分別為6步和8步,問其內切圓的直徑為多少步?”現從該三角形內隨機取一點,則此點取自內切圓的概率是()A. B. C. D.8.設復數滿足,則在復平面內的對應點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.若復數z滿足,則復數z在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.已知拋物線:,直線與分別相交于點,與的準線相交于點,若,則()A.3 B. C. D.11.點在所在的平面內,,,,,且,則()A. B. C. D.12.函數,,的部分圖象如圖所示,則函數表達式為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若展開式中的常數項為240,則實數的值為________.14.已知一組數據1.6,1.8,2,2.2,2.4,則該組數據的方差是_______.15.已知函數,若,則的取值范圍是__16.若函數與函數,在公共點處有共同的切線,則實數的值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)平面直角坐標系中,曲線:.直線經過點,且傾斜角為,以為極點,軸正半軸為極軸,建立極坐標系.(1)寫出曲線的極坐標方程與直線的參數方程;(2)若直線與曲線相交于,兩點,且,求實數的值.18.(12分)我國在貴州省平塘縣境內修建的500米口徑球面射電望遠鏡(FAST)是目前世界上最大單口徑射電望遠鏡.使用三年來,已發現132顆優質的脈沖星候選體,其中有93顆已被確認為新發現的脈沖星,脈沖星是上世紀60年代天文學的四大發現之一,脈沖星就是正在快速自轉的中子星,每一顆脈沖星每兩脈沖間隔時間(脈沖星的自轉周期)是-定的,最小小到0.0014秒,最長的也不過11.765735秒.某-天文研究機構觀測并統計了93顆已被確認為新發現的脈沖星的自轉周期,繪制了如圖的頻率分布直方圖.(1)在93顆新發現的脈沖星中,自轉周期在2至10秒的大約有多少顆?(2)根據頻率分布直方圖,求新發現脈沖星自轉周期的平均值.19.(12分)設函數,其中.(Ⅰ)當為偶函數時,求函數的極值;(Ⅱ)若函數在區間上有兩個零點,求的取值范圍.20.(12分)設為拋物線的焦點,,為拋物線上的兩個動點,為坐標原點.(Ⅰ)若點在線段上,求的最小值;(Ⅱ)當時,求點縱坐標的取值范圍.21.(12分)已知函數.(1)解不等式;(2)記函數的最小值為,正實數、滿足,求證:.22.(10分)已知函數和的圖象關于原點對稱,且.(1)解關于的不等式;(2)如果對,不等式恒成立,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

根據已知條件和等比數列的通項公式,求出關系,即可求解.【詳解】,當時,,當時,,當時,,當時,,當時,,當時,,最小值為.故選:D.【點睛】本題考查等比數列通項公式,注意為正整數,如用基本不等式要注意能否取到等號,屬于基礎題.2、A【解析】

首先判斷和1的大小關系,再由換底公式和對數函數的單調性判斷的大小即可.【詳解】因為,,,所以,綜上可得.故選:A【點睛】本題考查了換底公式和對數函數的單調性,考查了推理能力與計算能力,屬于基礎題.3、A【解析】

將整理成的形式,得到復數所對應的的點,從而可選出所在象限.【詳解】解:,所以所對應的點為在第一象限.故選:A.【點睛】本題考查了復數的乘法運算,考查了復數對應的坐標.易錯點是誤把當成進行計算.4、C【解析】

根據三角函數圖像的變換與參數之間的關系,即可容易求得.【詳解】為得到,將橫坐標伸長到原來的2倍(縱坐標不變),故可得;再將向左平移個單位長度,故可得.故選:C.【點睛】本題考查三角函數圖像的平移,涉及誘導公式的使用,屬基礎題.5、D【解析】分析:因為題設中給出了的值,要求的值,故應考慮兩者之間滿足的關系.詳解:由題設有,故有,所以,從而,故選D.點睛:本題考查函數的表示方法,解題時注意根據問題的條件和求解的結論之間的關系去尋找函數的解析式要滿足的關系.6、D【解析】

根據向量垂直則數量積為零,結合以及夾角的余弦值,即可求得參數值.【詳解】依題意,得,即.將代入可得,,解得(舍去).故選:D.【點睛】本題考查向量數量積的應用,涉及由向量垂直求參數值,屬基礎題.7、C【解析】

利用直角三角形三邊與內切圓半徑的關系求出半徑,再分別求出三角形和內切圓的面積,根據幾何概型的概率計算公式,即可求解.【詳解】由題意,直角三角形的斜邊長為,利用等面積法,可得其內切圓的半徑為,所以向次三角形內投擲豆子,則落在其內切圓內的概率為.故選:C.【點睛】本題主要考查了面積比的幾何概型的概率的計算問題,其中解答中熟練應用直角三角形的性質,求得其內切圓的半徑是解答的關鍵,著重考查了推理與運算能力.8、C【解析】

化簡得到,得到答案.【詳解】,故,對應點在第三象限.故選:.【點睛】本題考查了復數的化簡和對應象限,意在考查學生的計算能力.9、A【解析】

化簡復數,求得,得到復數在復平面對應點的坐標,即可求解.【詳解】由題意,復數z滿足,可得,所以復數在復平面內對應點的坐標為位于第一象限故選:A.【點睛】本題主要考查了復數的運算,以及復數的幾何表示方法,其中解答中熟記復數的運算法則,結合復數的表示方法求解是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.10、C【解析】

根據拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點如圖,過A,M作準線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點,所以MD為三角形NAC的中位線,故MD=CE=EA=AC設MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點睛】本題考查求拋物線的焦點弦的斜率,常見于利用拋物線的定義構建關系,屬于中檔題.11、D【解析】

確定點為外心,代入化簡得到,,再根據計算得到答案.【詳解】由可知,點為外心,則,,又,所以①因為,②聯立方程①②可得,,,因為,所以,即.故選:【點睛】本題考查了向量模長的計算,意在考查學生的計算能力.12、A【解析】

根據圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【詳解】由圖像知,,,解得,因為函數過點,所以,,即,解得,因為,所以,.故選:A【點睛】本題考查根據圖像求正弦型函數的解析式,三角函數誘導公式,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、-3【解析】

依題意可得二項式展開式的常數項為即可得到方程,解得即可;【詳解】解:∵二項式的展開式中的常數項為,∴解得.故答案為:【點睛】本題考查二項式展開式中常數項的計算,屬于基礎題.14、0.08【解析】

先求解這組數據的平均數,然后利用方差的公式可得結果.【詳解】首先求得,.故答案為:0.08.【點睛】本題主要考查數據的方差,明確方差的計算公式是求解的關鍵,側重考查數據分析的核心素養.15、【解析】

根據分段函數的性質,即可求出的取值范圍.【詳解】當時,,,當時,,所以,故的取值范圍是.故答案為:.【點睛】本題考查分段函數的性質,已知分段函數解析式求參數范圍,還涉及對數和指數的運算,屬于基礎題.16、【解析】

函數的定義域為,求出導函數,利用曲線與曲線公共點為由于在公共點處有共同的切線,解得,,聯立解得的值.【詳解】解:函數的定義域為,,,設曲線與曲線公共點為,由于在公共點處有共同的切線,∴,解得,.由,可得.聯立,解得.故答案為:.【點睛】本題考查函數的導數的應用,切線方程的求法,考查轉化思想以及計算能力,是中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(t為參數);(Ⅱ)或或.【解析】

試題分析:本題主要考查極坐標方程、參數方程與直角方程的相互轉化、直線與拋物線的位置關系等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,用,化簡表達式,得到曲線的極坐標方程,由已知點和傾斜角得到直線的參數方程;第二問,直線方程與曲線方程聯立,消參,解出的值.試題解析:(1)即,.(2),符合題意考點:本題主要考查:1.極坐標方程,參數方程與直角方程的相互轉化;2.直線與拋物線的位置關系.18、(1)79顆;(2)5.5秒.【解析】

(1)利用各小矩形的面積和為1可得,進而得到脈沖星自轉周期在2至10秒的頻率,從而得到頻數;(2)平均值的估計值為各小矩形組中值與頻率的乘積的和得到.【詳解】(1)第一到第六組的頻率依次為0.1,0.2,0.3,0.2,,0.05,其和為1所以,,所以,自轉周期在2至10秒的大約有(顆).(2)新發現的脈沖星自轉周期平均值為(秒).故新發現的脈沖星自轉周期平均值為5.5秒.【點睛】本題考查頻率分布直方圖的應用,涉及到平均數的估計值等知識,是一道容易題.19、(Ⅰ)極小值,極大值;(Ⅱ)或【解析】

(Ⅰ)根據偶函數定義列方程,解得.再求導數,根據導函數零點列表分析導函數符號變化規律,即得極值,(Ⅱ)先分離變量,轉化研究函數,,利用導數研究單調性與圖象,最后根據圖象確定滿足條件的的取值范圍.【詳解】(Ⅰ)由函數是偶函數,得,即對于任意實數都成立,所以.此時,則.由,解得.當x變化時,與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調遞減,在上單調遞增.所以有極小值,有極大值.(Ⅱ)由,得.所以“在區間上有兩個零點”等價于“直線與曲線,有且只有兩個公共點”.對函數求導,得.由,解得,.當x變化時,與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調遞減,在上單調遞增.又因為,,,,所以當或時,直線與曲線,有且只有兩個公共點.即當或時,函數在區間上有兩個零點.【點睛】利用函數零點的情況求參數值或取值范圍的方法(1)利用零點存在的判定定理構建不等式求解.(2)分離參數后轉化為函數的值域(最值)問題求解.(3)轉化為兩熟悉的函數圖象的上、下關系問題,從而構建不等式求解.20、(Ⅰ)(Ⅱ)【解析】

(1)由拋物線的性質,當軸時,最小;(2)設點,,分別代入拋物線方程和得到三個方程,消去,得到關于的一元二次方程,利用判別式即可求出的范圍.【詳解】解:(1)由拋物線的標準方程,,根據拋物線的性質,當軸時,最小,最小值為,即為4.(2)由題意,設點,,其中,.則,①,②因為,,,所以.③由①②③,得,由,且,得,解不等式,得點縱坐標的范圍為.【點睛】本題主要考查拋物線的方程和性質和二次方程的解的問題,考查運算能力,此類問題能較好的考查考生的邏輯思維能力、運算求解能力、分析問題解決問題的能力等,易錯點是復雜式子的變形能力不足,導致錯解.21、(1);(2)見解析.【解析】

(1)分、、三種情況解不等式,綜合可得出原不等式的的解集;(2)利用絕對值三角不等式可求得函數的最小值為,進而可得出,再將代數式與相乘,利用基本不等式求得的最小值,進而可證得結論成立.【詳解】(1)當時,由,得,即,解得,此時;當時,由,得,即,解得,此時;當時,由,得,即,解得,此時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論