




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省鄰水實驗學校2025屆高一下數學期末質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.是空氣質量的一個重要指標,我國標準采用世衛組織設定的最寬限值,即日均值在以下空氣質量為一級,在之間空氣質量為二級,在以上空氣質量為超標.如圖是某地11月1日到10日日均值(單位:)的統計數據,則下列敘述不正確的是()A.這天中有天空氣質量為一級 B.這天中日均值最高的是11月5日C.從日到日,日均值逐漸降低 D.這天的日均值的中位數是2.黃金分割比是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,約為0.618,這一比值也可以表示為a=2cos72°,則=()A. B.1 C.2 D.3.某工廠對一批新產品的長度(單位:)進行檢測,如下圖是檢測結果的頻率分布直方圖,據此估計這批產品的中位數與平均數分別為()A.20,22.5 B.22.5,25 C.22.5,22.75 D.22.75,22.754.在ΔABC中,內角A,B,C所對的邊分別為a,b,c,若c=2bsinC,B≤πA.π6 B.π4 C.π5.在等比數列{an}中,a2=8,a5=64,,則公比q為()A.2 B.3 C.4 D.86.已知圓與交于兩點,其中一交點的坐標為,兩圓的半徑之積為9,軸與直線都與兩圓相切,則實數()A. B. C. D.7.一個正方體被一個平面截去一部分后,剩余部分的三視圖如圖,則截去部分體積與原正方體體積的比值為()A. B. C. D.8.函數f(x)=x?lnA. B.C. D.9.如果直線a平行于平面,則()A.平面內有且只有一直線與a平行B.平面內有無數條直線與a平行C.平面內不存在與a平行的直線D.平面內的任意直線與直線a都平行10.已知,是兩個不同的平面,給出下列四個條件:①存在一條直線,使得,;②存在兩條平行直線,,使得,,,;③存在兩條異面直線,,使得,,,;④存在一個平面,使得,.其中可以推出的條件個數是()A.1 B.2 C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量(1,2),(x,4),且∥,則_____.12.已知等比數列、、、滿足,,,則的取值范圍為__________.13.不等式的解集為______.14.在△ABC中,若∠A=120°,AB=5,BC=7,則△ABC的面積S=_____.15.向量.若向量,則實數的值是________.16.直線x-3三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知向量,滿足:,,.(Ⅰ)求與的夾角;(Ⅱ)求.18.在△ABC中,角A,B,C對應的邊分別是a,b,c,已知cos2A﹣3cos(B+C)=1.(1)求角A的大小;(2)若△ABC的面積S=5,b=5,求sinBsinC的值.19.在中,角,,所對的邊分別為,,,且,.(1)求證:是銳角三角形;(2)若,求的面積.20.設函數.(1)若不等式的解集,求的值;(2)若,①,求的最小值;②若在上恒成立,求實數的取值范圍.21.已知等差數列滿足,前項和.(1)求的通項公式(2)設等比數列滿足,,求的通項公式及的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
由折線圖逐一判斷各選項即可.【詳解】由圖易知:第3,8,9,10天空氣質量為一級,故A正確,11月5日日均值為82,顯然最大,故B正確,從日到日,日均值分別為:82,73,58,34,30,逐漸降到,故C正確,中位數是,所以D不正確,故選D.【點睛】本題考查了頻數折線圖,考查讀圖,識圖,用圖的能力,考查中位數的概念,屬于基礎題.2、A【解析】
根據已知利用同角三角函數基本關系式,二倍角公式、誘導公式化簡即可求值得解.【詳解】∵a=2cos72°,∴a2=4cos272°,可得:4﹣a2=4﹣4cos272°=4sin272°,∴2sin72°,a2cos72°?2sin72°=2sin144°=2sin36°,∴.故選:A.【點睛】本題主要考查了同角三角函數基本關系式,二倍角公式、誘導公式在三角函數化簡求值中的應用,考查了計算能力和轉化思想,屬于基礎題.3、C【解析】
根據平均數的定義即可求出.根據頻率分布直方圖中,中位數的左右兩邊頻率相等,列出等式,求出中位數即可.【詳解】:根據頻率分布直方圖,得平均數為1(12.1×0.02+17.1×0.04+22.1×0.08+27.1×0.03+32.1×0.03)=22.71,∵0.02×1+0.04×1=0.3<0.1,0.3+0.08×1=0.7>0.1;∴中位數應在20~21內,設中位數為x,則0.3+(x﹣20)×0.08=0.1,解得x=22.1;∴這批產品的中位數是22.1.故選C.【點睛】本題考查了利用頻率分布直方圖求數據的中位數平均數的應用問題,是基礎題目.4、A【解析】
利用正弦定理可求得sinB=12【詳解】因為c=2bsinC,所以sinC=2sinBsinC,所以sinB=1【點睛】本題主要考查正弦定理的運用,難度較小.5、A【解析】,選A.6、A【解析】
根據圓的切線性質可知連心線過原點,故設連心線,再代入,根據方程的表達式分析出是方程的兩根,再根據韋達定理結合兩圓的半徑之積為9求解即可.【詳解】因為兩切線均過原點,有對稱性可知連心線所在的直線經過原點,設該直線為,設兩圓與軸的切點分別為,則兩圓方程為:,因為圓與交于兩點,其中一交點的坐標為.所以①,②.又兩圓半徑之積為9,所以③聯立①②可知是方程的兩根,化簡得,即.代入③可得,由題意可知,故.因為的傾斜角是連心線所在的直線的傾斜角的兩倍.故,故.故選:A【點睛】本題主要考查了圓的方程的綜合運用,需要根據題意列出對應的方程,結合韋達定理以及直線的斜率關系求解.屬于難題.7、C【解析】
根據三視圖還原出幾何體,得到是在正方體中,截去四面體,利用體積公式,求出其體積,然后得到答案.【詳解】根據三視圖還原出幾何體,如圖所述,得到是在正方體中,截去四面體設正方體的棱長為,則,故剩余幾何體的體積為,所以截去部分的體積與剩余部分的體積的比值為.故選:C.【點睛】本題考查了幾何體的三視圖求幾何體的體積;關鍵是正確還有幾何體,利用體積公式解答,屬于簡單題.8、D【解析】
判斷函數的奇偶性排除選項,利用特殊點的位置排除選項即可.【詳解】函數f(x)=x?ln|x|是奇函數,排除選項A,當x=1e時,y=-1e,對應點在故選:D.【點睛】本題考查函數的圖象的判斷,函數的奇偶性以及特殊點的位置是判斷函數的圖象的常用方法.9、B【解析】
根據線面平行的性質解答本題.【詳解】根據線面平行的性質定理,已知直線平面.
對于A,根據線面平行的性質定理,只要過直線a的平面與平面相交得到的交線,都與直線a平行;所以平面內有無數條直線與a平行;故A錯誤;
對于B,只要過直線a的平面與平面相交得到的交線,都與直線a平行;所以平面內有無數條直線與a平行;故B正確;
對于C,根據線面平行的性質,過直線a的平面與平面相交得到的交線,則直線,所以C錯誤;
對于D,根據線面平行的性質,過直線a的平面與平面相交得到的交線,則直線,則在平面內與直線相交的直線與a不平行,所以D錯誤;
故選:B.【點睛】本題考查了線面平行的性質定理;如果直線與平面平行,那么過直線的平面與已知平面相交,直線與交線平行.10、B【解析】當,不平行時,不存在直線與,都垂直,,,故正確;存在兩條平行直線,,,,,,則,相交或平行,所以不正確;存在兩條異面直線,,,,,,由面面平行的判定定理得,故正確;存在一個平面,使得,,則,相交或平行,所以不正確;故選二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】
根據求得,從而可得,再求得的坐標,利用向量模的公式,即可求解.【詳解】由題意,向量,則,解得,所以,則,所以.【點睛】本題主要考查了向量平行關系的應用,以及向量的減法和向量的模的計算,其中解答中熟記向量的平行關系,以及向量的坐標運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.12、【解析】
設等比數列、、、的公比為,由和計算出的取值范圍,再由可得出的取值范圍.【詳解】設等比數列、、、的公比為,,,,所以,,,.所以,,故答案為:.【點睛】本題考查等比數列通項公式及其性質,解題的關鍵就是利用已知條件求出公比的取值范圍,考查運算求解能力,屬于中等題.13、【解析】
根據一元二次不等式的解法直接求解可得結果.【詳解】由得:即不等式的解集為故答案為:【點睛】本題考查一元二次不等式的求解問題,屬于基礎題.14、【解析】
用余弦定理求出邊的值,再用面積公式求面積即可.【詳解】解:據題設條件由余弦定理得,即,即解得,故的面積,故答案為:.【點睛】本題主要考查余弦定理解三角形,考查三角形的面積公式,屬于基礎題.15、-3【解析】
試題分析:∵,∴,又∵,∴,∴,∴考點:本題考查了向量的坐標運算點評:熟練運用向量的坐標運算是解決此類問題的關鍵,屬基礎題16、π【解析】
將直線方程化為斜截式,利用直線斜率與傾斜角的關系求解即可.【詳解】因為x-3所以y=33x-33則tanα=33,α=【點睛】本題主要考查直線的斜率與傾斜角的關系,意在考查對基礎知識的掌握情況,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】
(I)利用向量數量積的運算,化簡,得到,由此求得的大小.(II)先利用向量的數量積運算,求得的值,由此求得的值.【詳解】解:(Ⅰ)因為,所以.所以.因為,所以.(Ⅱ)因為,由已知,,所以.所以.【點睛】本小題主要考查向量數量積運算,考查向量夾角的計算,考查向量模的求法,屬于基礎題.18、(1)(2)【解析】試題分析:(1)根據二倍角公式,三角形內角和,所以,整理為關于的二次方程,解得角的大小;(2)根據三角形的面積公式和上一問角,代入后解得邊,這樣就知道,然后根據余弦定理再求,最后根據證得定理分別求得和.試題解析:(1)由cos2A-3cos(B+C)=1,得2cos2A+3cosA-2=0,即(2cosA-1)(cosA+2)=0,解得cosA=或cosA=-2(舍去).因為0<A<π,所以A=.(2)由S=bcsinA=bc×=bc=5,得bc=20,又b=5,知c=4.由余弦定理得a2=b2+c2-2bccosA=25+16-20=21,故a=.從而由正弦定理得sinBsinC=sinA×sinA=sin2A=×=.考點:1.二倍角公式;2.正余弦定理;3.三角形面積公式.【方法點睛】本題涉及到解三角形問題,所以有關三角問題的公式都有涉及,當出現時,就要考慮一個條件,,,這樣就做到了有效的消元,涉及三角形的面積問題,就要考慮公式,靈活使用其中的一個.19、(1)證明見解析(2)【解析】
(1)由正弦定理、余弦定理得,則角C最大,由余弦定理可得答案.
(2)由平面向量數量積的運算及三角形的面積公式結合(1)可得,利用面積公式可求解.【詳解】【詳解】
(1)由,根據正弦定理得,又,所以即,所以,因此邊最大,即角最大.設則即,所以是銳角三角形.(2)由(1)和,即可得解得.所以在中,且所以的面積為.【點睛】本題考查正弦定理和余弦定理,數量積的定義的應用和求三角形面積.20、(1)(2)①9,②【解析】
(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 代簽合伙人合同協議書
- 工程安裝安全合同協議書
- 京東商城電子合同協議書
- 外墻竹架搭設合同協議書
- 養老創業計劃書范文大全
- 融媒體視野下傳統媒體轉型路徑研究
- 互聯網物流物流行業的新發展
- 2025年煤氣項目安全調研評估報告
- syb餐飲創業計劃書模板
- 2025秋五年級上冊語文(統編版)-【6 將相和】作業課件
- 廣東省佛山市2025屆高三下學期二模政治試題 含解析
- 2025年上海長寧區高三二模高考英語試卷試題(含答案詳解)
- 2025屆廣東省茂名市高三下學期第二次綜合測試生物學試卷(含答案)
- 《Python程序設計基礎》中職全套教學課件
- 《廣告創意與設計》課件
- 2025年2月24日四川省公務員面試真題及答案解析(行政執法崗)
- 公衛健康教育試題及答案
- 分級保護技術標準bmb17-2024
- 物流公司安全生產自查報告范文
- 公司高速公路占道施工應急方案
- 公司安全考核試題及答案
評論
0/150
提交評論