




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽馬鞍山中加雙語學校2025屆數學高一下期末監測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等比數列中,若,且成等差數列,則()A.2 B.2或32 C.2或-32 D.-12.的斜二測直觀圖如圖所示,則原的面積為()A. B.1 C. D.23.如果3個正整數可作為一個直角三角形三條邊的邊長,則稱這3個數為一組勾股數,從中任取3個不同的數,則這3個數構成一組勾股數的概率為()A. B. C. D.4.已知的頂點坐標為,,,則邊上的中線的長為()A. B. C. D.5.的值為A. B. C. D.6.要得到函數y=cos4x+πA.向左平移π3個單位長度 B.向右平移πC.向左平移π12個單位長度 D.向右平移π7.在平行四邊形中,為一條對角線,,,則=()A.(2,4) B.(3,5) C.(1,1) D.(-1,-1)8.擲兩顆均勻的骰子,則點數之和為5的概率等于()A. B. C. D.9.已知三角形ABC,如果,則該三角形形狀為()A.銳角三角形 B.鈍角三角形 C.直角三角形 D.以上選項均有可能10.函數的最小正周期為,則的圖象的一條對稱軸方程是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.方程在區間的解為_______.12.已知數列是等差數列,,那么使其前項和最小的是______.13.若,,則___________.14.中,,,,則________.15.黃金分割比是指將整體一分為二,較大部分與整體部分的比值等于較小部分與較大部分的比值,其比值為,約為0.618,這一數值也可以近似地用表示,則_____.16.若,且,則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知f(α)=,其中α≠kπ(k∈Z).(1)化簡f(α);(2)若f(+β)=-,β是第四象限的角,求sin(2β+)的值.18.在中,已知,,且AC邊的中點M在y軸上,BC邊的中點N在x軸上,求:頂點C的坐標;
直線MN的方程.19.已知A、B分別在射線CM、CN(不含端點C)上運動,∠MCN=23π(Ⅰ)若a、b、(Ⅱ)若c=3,∠ABC=θ,試用θ表示ΔABC20.已知方程,.(1)若是它的一個根,求的值;(2)若,求滿足方程的所有虛數的和.21.已知函數的圖象關于直線對稱,且圖象上相鄰兩個最高點的距離為.(1)求和的值;(2)當時,求函數的最大值和最小值;(3)設,若的任意一條對稱軸與x軸的交點的橫坐標不屬于區間,求c的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
根據等差數列與等比數列的通項公式及性質,列出方程可得q的值,可得的值.【詳解】解:設等比數列的公比為q(),成等差數列,,,,解得:,,,故選B.【點睛】本題主要考查等差數列和等比數列的定義及性質,熟悉其性質是解題的關鍵.2、D【解析】
根據直觀圖可計算其面積為,原的面積為,由得結論.【詳解】由題意可得,所以由,即.故選:D.【點睛】本題考查了斜二側畫直觀圖,三角形的面積公式,需要注意的是與原圖與直觀圖的面積之比為,屬于基礎題.3、C【解析】
試題分析:從中任取3個不同的數共有10種不同的取法,其中的勾股數只有3,4,5,故3個數構成一組勾股數的取法只有1種,故所求概率為,故選C.考點:古典概型4、D【解析】
利用中點坐標公式求得,再利用兩點間距離公式求得結果.【詳解】由,可得中點又本題正確選項:【點睛】本題考查兩點間距離公式的應用,關鍵是能夠利用中點坐標公式求得中點坐標.5、B【解析】
試題分析:由誘導公式得,故選B.考點:誘導公式.6、C【解析】
先化簡得y=cos【詳解】因為y=cos所以要得到函數y=cos4x+π3的圖像,只需將函數故選:C【點睛】本題主要考查三角函數的圖像的變換,意在考查學生對該知識的理解掌握水平,屬于基礎題.7、C【解析】試題分析:,故選C.考點:平面向量的線性運算.8、B【解析】
試題分析:擲兩顆均勻的骰子,共有36種基本事件,點數之和為5的事件有(1,4),(2,3),(3,2),(4,1)這四種,因此所求概率為,選B.考點:概率問題9、B【解析】
由正弦定理化簡已知可得:,由余弦定理可得,可得為鈍角,即三角形的形狀為鈍角三角形.【詳解】由正弦定理,,可得,化簡得,由余弦定理可得:,又,為鈍角,即三角形為鈍角三角形.故選:B.【點睛】本題主要考查了正弦定理,余弦定理在解三角形中的應用,考查了轉化思想,屬于基礎題.10、B【解析】
根據最小正周期為求解與解析式,再求解的對稱軸判斷即可.【詳解】因為最小正周期為,故.故,對稱軸方程為,解得.當時,.故選:B【點睛】本題主要考查了三角函數最小正周期的應用以及對稱軸的計算.屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、或【解析】
由題意求得,利用反三角函數求出方程在區間的解.【詳解】解:,得,,或,;方程在區間的解為:或.故答案為:或.【點睛】本題考查了三角函數方程的解法與應用問題,是基礎題.12、5【解析】
根據等差數列的前n項和公式,判斷開口方向,計算出對稱軸,即可得出答案。【詳解】因為等差數列前項和為關于的二次函數,又因為,所以其對稱軸為,而,所以開口向上,因此當時最小.【點睛】本題考查等差數列前n項和公式的性質,屬于基礎題。13、【解析】
將等式和等式都平方,再將所得兩個等式相加,并利用兩角和的正弦公式可求出的值.【詳解】若,,將上述兩等式平方得,①,②,①+②可得,求得,故答案為.【點睛】本題考查利用兩角和的正弦公式求值,解題的關鍵就是將等式進行平方,結合等式結構進行變形計算,考查運算求解能力,屬于中等題.14、7【解析】
在中,利用余弦定理得到,即可求解,得到答案.【詳解】由余弦定理可得,解得.故答案為:7.【點睛】本題主要考查了余弦定理的應用,其中解答中熟記三角形的余弦定理,準確計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.15、【解析】
代入分式利用同角三角函數的平方關系、二倍角公式及三角函數誘導公式化簡即可.【詳解】.故答案為:2【點睛】本題考查同角三角函數的平方關系、二倍角公式及三角函數誘導公式,屬于基礎題.16、【解析】根據三角函數恒等式,將代入得到,又因為,故得到故答案為。三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)直接利用三角函數的誘導公式,化簡運算,即可求解;(2)由,得,進一步求得,得到sin2與cos2,再由sin(2+)展開兩角和的正弦求解.【詳解】(1)由題意,可得=;(2)由f(+)==-,得sin.又β是第四象限的角,∴cos=.∴sin2,cos2.∴sin(2+)=sin2cos+cos2sin=.【點睛】本題主要考查了三角函數的化簡求值,及誘導公式及兩角差的正弦公式的應用,其中解答中熟記三家函數的恒等變換的公式,準確運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.18、(1);(2).【解析】試題分析:(1)邊AC的中點M在y軸上,由中點公式得,A,C兩點的橫坐標和的平均數為1,同理,B,C兩點的縱坐標和的平均數為1.構造方程易得C點的坐標.(2)根據C點的坐標,結合中點公式,我們可求出M,N兩點的坐標,代入兩點式即可求出直線MN的方程.解:(1)設點C(x,y),∵邊AC的中點M在y軸上得=1,∵邊BC的中點N在x軸上得=1,解得x=﹣5,y=﹣2.故所求點C的坐標是(﹣5,﹣2).(2)點M的坐標是(1,﹣),點N的坐標是(1,1),直線MN的方程是=,即5x﹣2y﹣5=1.點評:在求直線方程時,應先選擇適當的直線方程的形式,并注意各種形式的適用條件,用斜截式及點斜式時,直線的斜率必須存在,而兩點式不能表示與坐標軸垂直的直線,截距式不能表示與坐標軸垂直或經過原點的直線,故在解題時,若采用截距式,應注意分類討論,判斷截距是否為零;若采用點斜式,應先考慮斜率不存在的情況.19、(1)c=7或c=2.(1)=2sinθ+2【解析】試題分析:(Ⅰ)由題意可得a=c-4、b=c-1.又因∠MCN=π,,可得恒等變形得c1-9c+14=0,再結合c>4,可得c的值.(Ⅱ)在△ABC中,由正弦定理可得AC=1sⅠnθ,BC=,△ABC的周長f(θ)=|AC|+|BC|+|AB|=,再由利用正弦函數的定義域和值域,求得f(θ)取得最大值.試題解析:(Ⅰ)∵a、b、c成等差,且公差為1,∴a=c-4、b=c-1.又因∠MCN=π,,可得,恒等變形得c1-9c+14=0,解得c=2,或c=1.又∵c>4,∴c=2.(Ⅱ)在△ABC中,由正弦定理可得.∴△ABC的周長f(θ)=|AC|+|BC|+|AB|=,又,當,即時,f(θ)取得最大值.考點:1.余弦定理;1.正弦定理20、(1);(2)190.【解析】
(1)先設出的代數形式,把代入所給的方程,化簡后由實部和虛部對應相等進行求值;(2)由方程由虛根的條件,求出的所有的取值,再由方程虛根成對出現的特點,求出所有虛根之和.【詳解】解:(1)設,是的一個根,,,,解得,,,(2)方程有虛根,,解得,,,2,,又虛根是成對出現的,所有的虛根之和為.【點睛】本題是復數的綜合題,考查了復數相等條件的應用,方程有虛根的等價條件,以及方程中虛根的特點,屬于中檔題.21、(1),(2);.(3)【解析】
(1)由相鄰最高點距離得周期,從而可得,由對稱性可求得;(2)結合正弦函數性質可得最值.(3),先由半個周期大于得出的一個范圍,在此范
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 購銷合同的技術協議書
- 2025藥品注冊委托代理合同
- 委托蔬菜代銷合同協議書
- 如何作廢無效合同協議書
- 足浴合伙人合同協議書
- 2025上海市國有土地使用權出讓合同(現狀補辦類)
- 代理付款合同協議書模板
- 2025新網約車租賃服務合同
- 2025預約買賣合同范本
- 院校合同協議書怎么寫
- 2024年湖南省高考政治試卷真題(含答案)
- 2023年《畜牧獸醫綜合知識復習題及答案》
- 八年級語文下冊(部編版) 第四單元 經典演講-單元主題閱讀訓練(含解析)
- 2024新高考英語1卷試題及答案(含聽力原文)
- 2023-2024學年譯林版四年級英語下冊Unit8《How are you?》單元檢測卷(含聽力及答案)
- DL/T 5352-2018 高壓配電裝置設計規范
- 養老院食物中毒應急預案
- 國家開放大學《消費者行為學》形考任務實訓(六選一)參考答案
- JTG-C30-2002公路工程水文勘測設計規范-PDF解密
- 2024年廣東廣州越秀區小升初考試語文試卷含答案
- 慢性病照護智慧樹知到期末考試答案2024年
評論
0/150
提交評論