




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是()A. B. C. D.2.設正項等差數列的前項和為,且滿足,則的最小值為A.8 B.16 C.24 D.363.已知為虛數單位,若復數,則A. B.C. D.4.已知是球的球面上兩點,,為該球面上的動點.若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.5.在三棱錐中,,,則三棱錐外接球的表面積是()A. B. C. D.6.已知函數若對區間內的任意實數,都有,則實數的取值范圍是()A. B. C. D.7.已知斜率為2的直線l過拋物線C:的焦點F,且與拋物線交于A,B兩點,若線段AB的中點M的縱坐標為1,則p=()A.1 B. C.2 D.48.已知函數滿足,設,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.已知函數,,若對任意的總有恒成立,記的最小值為,則最大值為()A.1 B. C. D.10.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},則M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)11.設,,,則、、的大小關系為()A. B. C. D.12.已知曲線的一條對稱軸方程為,曲線向左平移個單位長度,得到曲線的一個對稱中心的坐標為,則的最小值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,在方向上的投影為,則與的夾角為_________.14.函數過定點________.15.請列舉用0,1,2,3這4個數字所組成的無重復數字且比210大的所有三位奇數:___________.16.已知橢圓:的左,右焦點分別為,,過的直線交橢圓于,兩點,若,且的三邊長,,成等差數列,則的離心率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,曲線的參數方程為(為參數,為實數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線與曲線交于,兩點,線段的中點為.(1)求線段長的最小值;(2)求點的軌跡方程.18.(12分)已知,函數有最小值7.(1)求的值;(2)設,,求證:.19.(12分)在平面直角坐標系中,,,且滿足(1)求點的軌跡的方程;(2)過,作直線交軌跡于,兩點,若的面積是面積的2倍,求直線的方程.20.(12分)設函數.(1)求不等式的解集;(2)若的最小值為,且,求的最小值.21.(12分)已知的內角的對邊分別為,且.(Ⅰ)求;(Ⅱ)若的周長是否有最大值?如果有,求出這個最大值,如果沒有,請說明理由.22.(10分)已知函數.(1)當時,求的單調區間.(2)設直線是曲線的切線,若的斜率存在最小值-2,求的值,并求取得最小斜率時切線的方程.(3)已知分別在,處取得極值,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
根據三視圖判斷出幾何體為正四棱錐,由此計算出幾何體的表面積.【詳解】根據三視圖可知,該幾何體為正四棱錐.底面積為.側面的高為,所以側面積為.所以該幾何體的表面積是.故選:D【點睛】本小題主要考查由三視圖判斷原圖,考查錐體表面積的計算,屬于基礎題.2、B【解析】
方法一:由題意得,根據等差數列的性質,得成等差數列,設,則,,則,當且僅當時等號成立,從而的最小值為16,故選B.方法二:設正項等差數列的公差為d,由等差數列的前項和公式及,化簡可得,即,則,當且僅當,即時等號成立,從而的最小值為16,故選B.3、B【解析】
因為,所以,故選B.4、C【解析】
如圖所示,當點C位于垂直于面的直徑端點時,三棱錐的體積最大,設球的半徑為,此時,故,則球的表面積為,故選C.考點:外接球表面積和椎體的體積.5、B【解析】
取的中點,連接、,推導出,設設球心為,和的中心分別為、,可得出平面,平面,利用勾股定理計算出球的半徑,再利用球體的表面積公式可得出結果.【詳解】取的中點,連接、,由和都是正三角形,得,,則,則,由勾股定理的逆定理,得.設球心為,和的中心分別為、.由球的性質可知:平面,平面,又,由勾股定理得.所以外接球半徑為.所以外接球的表面積為.故選:B.【點睛】本題考查三棱錐外接球表面積的計算,解題時要分析幾何體的結構,找出球心的位置,并以此計算出球的半徑長,考查推理能力與計算能力,屬于中等題.6、C【解析】分析:先求導,再對a分類討論求函數的單調區間,再畫圖分析轉化對區間內的任意實數,都有,得到關于a的不等式組,再解不等式組得到實數a的取值范圍.詳解:由題得.當a<1時,,所以函數f(x)在單調遞減,因為對區間內的任意實數,都有,所以,所以故a≥1,與a<1矛盾,故a<1矛盾.當1≤a<e時,函數f(x)在[0,lna]單調遞增,在(lna,1]單調遞減.所以因為對區間內的任意實數,都有,所以,所以即令,所以所以函數g(a)在(1,e)上單調遞減,所以,所以當1≤a<e時,滿足題意.當a時,函數f(x)在(0,1)單調遞增,因為對區間內的任意實數,都有,所以,故1+1,所以故綜上所述,a∈.故選C.點睛:本題的難點在于“對區間內的任意實數,都有”的轉化.由于是函數的問題,所以我們要聯想到利用函數的性質(單調性、奇偶性、周期性、對稱性、最值、極值等)來分析解答問題.本題就是把這個條件和函數的單調性和最值聯系起來,完成了數學問題的等價轉化,找到了問題的突破口.7、C【解析】
設直線l的方程為x=y,與拋物線聯立利用韋達定理可得p.【詳解】由已知得F(,0),設直線l的方程為x=y,并與y2=2px聯立得y2﹣py﹣p2=0,設A(x1,y1),B(x2,y2),AB的中點C(x0,y0),∴y1+y2=p,又線段AB的中點M的縱坐標為1,則y0(y1+y2)=,所以p=2,故選C.【點睛】本題主要考查了直線與拋物線的相交弦問題,利用韋達定理是解題的關鍵,屬中檔題.8、B【解析】
結合函數的對應性,利用充分條件和必要條件的定義進行判斷即可.【詳解】解:若,則,即成立,若,則由,得,則“”是“”的必要不充分條件,故選:B.【點睛】本題主要考查充分條件和必要條件的判斷,結合函數的對應性是解決本題的關鍵,屬于基礎題.9、C【解析】
對任意的總有恒成立,因為,對恒成立,可得,令,可得,結合已知,即可求得答案.【詳解】對任意的總有恒成立,對恒成立,令,可得令,得當,當,,故令,得當時,當,當時,故選:C.【點睛】本題主要考查了根據不等式恒成立求最值問題,解題關鍵是掌握不等式恒成立的解法和導數求函數單調性的解法,考查了分析能力和計算能力,屬于難題.10、C【解析】
先化簡N={x|x(x+3)≤0}={x|-3≤x≤0},再根據M={x|﹣1<x<2},求兩集合的交集.【詳解】因為N={x|x(x+3)≤0}={x|-3≤x≤0},又因為M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故選:C【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎題.11、D【解析】
因為,,所以且在上單調遞減,且所以,所以,又因為,,所以,所以.故選:D.【點睛】本題考查利用指對數函數的單調性比較指對數的大小,難度一般.除了可以直接利用單調性比較大小,還可以根據中間值“”比較大小.12、C【解析】
在對稱軸處取得最值有,結合,可得,易得曲線的解析式為,結合其對稱中心為可得即可得到的最小值.【詳解】∵直線是曲線的一條對稱軸.,又..∴平移后曲線為.曲線的一個對稱中心為..,注意到故的最小值為.故選:C.【點睛】本題考查余弦型函數性質的應用,涉及到函數的平移、函數的對稱性,考查學生數形結合、數學運算的能力,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由向量投影的定義可求得兩向量夾角的余弦值,從而得角的大小.【詳解】在方向上的投影為,即夾角為.故答案為:.【點睛】本題考查求向量的夾角,掌握向量投影的定義是解題關鍵.14、【解析】
令,,與參數無關,即可得到定點.【詳解】由指數函數的性質,可得,函數值與參數無關,所有過定點.故答案為:【點睛】此題考查函數的定點問題,關鍵在于找出自變量的取值使函數值與參數無關,熟記常見函數的定點可以節省解題時間.15、231,321,301,1【解析】
分個位數字是1、3兩種情況討論,即得解【詳解】0,1,2,3這4個數字所組成的無重復數字比210大的所有三位奇數有:(1)當個位數字是1時,數字可以是231,321,301;(2)當個位數字是3時數字可以是1.故答案為:231,321,301,1【點睛】本題考查了分類計數法的應用,考查了學生分類討論,數學運算的能力,屬于基礎題.16、【解析】
設,,,根據勾股定理得出,而由橢圓的定義得出的周長為,有,便可求出和的關系,即可求得橢圓的離心率.【詳解】解:由已知,的三邊長,,成等差數列,設,,,而,根據勾股定理有:,解得:,由橢圓定義知:的周長為,有,,在直角中,由勾股定理,,即:,∴離心率.故答案為:.【點睛】本題考查橢圓的離心率以及橢圓的定義的應用,考查計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)將曲線的方程化成直角坐標方程為,當時,線段取得最小值,利用幾何法求弦長即可.(2)當點與點不重合時,設,由利用向量的數量積等于可求解,最后驗證當點與點重合時也滿足.【詳解】解曲線的方程化成直角坐標方程為即圓心,半徑,曲線為過定點的直線,易知在圓內,當時,線段長最小為當點與點不重合時,設,化簡得當點與點重合時,也滿足上式,故點的軌跡方程為【點睛】本題考查了極坐標與普通方程的互化、直線與圓的位置關系、列方程求動點的軌跡方程,屬于基礎題.18、(1).(2)見解析【解析】
(1)由絕對值三解不等式可得,所以當時,,即可求出參數的值;(2)由,可得,再利用基本不等式求出的最小值,即可得證;【詳解】解:(1)∵,∴當時,,解得.(2)∵,∴,∴,當且僅當,即,時,等號成立.∴.【點睛】本題主要考查絕對值三角不等式及基本不等式的簡單應用,屬于中檔題.19、(1).(2)的方程為.【解析】
(1)令,則,由此能求出點C的軌跡方程.(2)令,令直線,聯立,得,由此利用根的判別式,韋達定理,三角形面積公式,結合已知條件能求出直線的方程。【詳解】解:(1)因為,即直線的斜率分別為且,設點,則,整理得.(2)令,易知直線不與軸重合,令直線,與聯立得,所以有,由,故,即,從而,解得,即。所以直線的方程為。【點睛】本題考查橢圓方程、直線方程的求法,考查橢圓方程、橢圓與直線的位置關系,考查運算求解能力,考查化歸與轉化思想,是中檔題。20、(1)或(2)最小值為.【解析】
(1)討論,,三種情況,分別計算得到答案.(2)計算得到,再利用均值不等式計算得到答案.【詳解】(1)當時,由,解得;當時,由,解得;當時,由,解得.所以所求不等式的解集為或.(2)根據函數圖像知:當時,,所以.因為,由,可知,所以,當且僅當,,時,等號成立.所以的最小值為.【點睛】本題考查了解絕對值不等式,函數最值,均值不等式,意在考查學生對于不等式,函數知識的綜合應用.21、(Ⅰ);(Ⅱ)有最大值,最大值為3.【解析】
(Ⅰ)利用正弦定理將角化邊,再由余弦定理計算可得;(Ⅱ)由正弦定理可得,則,再根據正弦函數的性質計算可得;【詳解】(Ⅰ)由得再由正弦定理得因此,又因為,所以.(Ⅱ)當時,的周長有最大值,且最大值為3,理由如下:由正弦定理得,所以,所以.因為,所以,所以當即時,取到最大值2,所以的周長有最大值,最大值為3.【點睛】本題考查正弦定理、余弦定理解三角形,以及三角函數的性質的應用,屬于中檔題.22、(1)單調遞增區間為,;單調遞減區間為;(2),;(3)證明見解析.【解析】
(1)由的正負可確定的單調區間;(2)利用基本不等式可求得時,取得最小值,由導數的幾何意義可知,從而求得,求得切點坐標后,可得到切線方程;(3)由極值點的定義可知是的兩個不等正根,由判別式大于
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB31/T 1151-2019高架橋綠化技術規程
- DB31/T 1103.2-2018商務信用評價方法第2部分:單用途預付卡發卡企業
- DB31/ 379-2015在用壓燃式發動機汽車加載減速法排氣煙度排放限值
- 2025南京新房購房合同范本
- 金屬工具的市場前景分析考核試卷
- 影視錄放設備的G網絡應用考核試卷
- 高中生必看!高中三年詳細學習規劃與建議助你輕松應對
- 沈陽市皇姑區2025年八年級《語文》上學期期末試題與參考答案
- 氣象災害預警信息發布網絡補充協議
- 2025年中國編織品制造行業市場前景預測及投資價值評估分析報告
- 2025年計算機二級MySQL經典試題及答案
- 《研究生就業指導課件(說課)》
- 北京2025年商務部直屬事業單位第二批招聘169人筆試歷年參考題庫附帶答案詳解
- 2025年武漢鐵路局集團招聘(180人)筆試參考題庫附帶答案詳解
- 2025-2030全球及中國免疫磁珠行業市場現狀供需分析及市場深度研究發展前景及規劃可行性分析研究報告
- 2025統編版(2024)小學道德與法治一年級下冊《第13課-快樂兒童節》教學設計
- 2025冶金工業信息標準研究院招聘筆試參考題庫附帶答案詳解
- 三方協議空白合同
- 擋煙垂壁施工合同
- 【MOOC】當代社會中的科學與技術-南京大學 中國大學慕課MOOC答案
- 上海市徐匯區2023-2024學年八年級下學期學習能力診斷英語卷
評論
0/150
提交評論