遼寧省沈陽市蘇家屯區(qū)中考數(shù)學(xué)仿真試卷及答案解析_第1頁
遼寧省沈陽市蘇家屯區(qū)中考數(shù)學(xué)仿真試卷及答案解析_第2頁
遼寧省沈陽市蘇家屯區(qū)中考數(shù)學(xué)仿真試卷及答案解析_第3頁
遼寧省沈陽市蘇家屯區(qū)中考數(shù)學(xué)仿真試卷及答案解析_第4頁
遼寧省沈陽市蘇家屯區(qū)中考數(shù)學(xué)仿真試卷及答案解析_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

遼寧省沈陽市蘇家屯區(qū)中考數(shù)學(xué)仿真試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知⊙O的半徑為5,若OP=6,則點P與⊙O的位置關(guān)系是()A.點P在⊙O內(nèi) B.點P在⊙O外 C.點P在⊙O上 D.無法判斷2.《孫子算經(jīng)》是中國傳統(tǒng)數(shù)學(xué)的重要著作,其中有一道題,原文是:“今有木,不知長短,引繩度之,余繩四尺五寸;屈繩量之,不足一尺.木長幾何?”意思是:用一根繩子去量一根木頭的長、繩子還剩余4.5尺;將繩子對折再量木頭,則木頭還剩余1尺,問木頭長多少尺?可設(shè)木頭長為x尺,繩子長為y尺,則所列方程組正確的是()A. B. C. D.3.下列哪一個是假命題()A.五邊形外角和為360°B.切線垂直于經(jīng)過切點的半徑C.(3,﹣2)關(guān)于y軸的對稱點為(﹣3,2)D.拋物線y=x2﹣4x+2017對稱軸為直線x=24.小昱和阿帆均從同一本書的第1頁開始,逐頁依順序在每一頁上寫一個數(shù).小昱在第1頁寫1,且之后每一頁寫的數(shù)均為他在前一頁寫的數(shù)加2;阿帆在第1頁寫1,且之后每一頁寫的數(shù)均為他在前一頁寫的數(shù)加1.若小昱在某頁寫的數(shù)為101,則阿帆在該頁寫的數(shù)為何?()A.350 B.351 C.356 D.3585.已知圓內(nèi)接正三角形的面積為3,則邊心距是()A.2 B.1 C. D.6.如果一個正多邊形內(nèi)角和等于1080°,那么這個正多邊形的每一個外角等于()A. B. C. D.7.將二次函數(shù)y=x2的圖象向右平移1個單位,再向上平移2個單位后,所得圖象的函數(shù)表達式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-28.如圖直線y=mx與雙曲線y=交于點A、B,過A作AM⊥x軸于M點,連接BM,若S△AMB=2,則k的值是()A.1 B.2 C.3 D.49.如圖,半徑為1的圓O1與半徑為3的圓O2相內(nèi)切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個數(shù)是()A.1 B.2 C.3 D.410.如圖是一個由5個相同的正方體組成的立體圖形,它的三視圖是()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖所示,輪船在處觀測燈塔位于北偏西方向上,輪船從處以每小時海里的速度沿南偏西方向勻速航行,小時后到達碼頭處,此時,觀測燈塔位于北偏西方向上,則燈塔與碼頭的距離是______海里(結(jié)果精確到個位,參考數(shù)據(jù):,,)12.如果點A(-1,4)、B(m,4)在拋物線y=a(x-1)2+h上,那么m的值為_____.13.如圖,每個小正方形邊長為1,則△ABC邊AC上的高BD的長為_____.14.在Rt△ABC中,∠C=90°,AB=6,cosB=,則BC的長為_____.15.如圖,已知正方形ABCD中,∠MAN=45°,連接BD與AM,AN分別交于E,F(xiàn)點,則下列結(jié)論正確的有_____.①MN=BM+DN②△CMN的周長等于正方形ABCD的邊長的兩倍;③EF1=BE1+DF1;④點A到MN的距離等于正方形的邊長⑤△AEN、△AFM都為等腰直角三角形.⑥S△AMN=1S△AEF⑦S正方形ABCD:S△AMN=1AB:MN⑧設(shè)AB=a,MN=b,則≥1﹣1.16.李明早上騎自行車上學(xué),中途因道路施工推車步行了一段路,到學(xué)校共用時15分鐘.如果他騎自行車的平均速度是每分鐘250米,推車步行的平均速度是每分鐘80米,他家離學(xué)校的路程是2900米,設(shè)他推車步行的時間為x分鐘,那么可列出的方程是_____________.17.函數(shù)的定義域是__________.三、解答題(共7小題,滿分69分)18.(10分)如圖,在方格紙中.(1)請在方格紙上建立平面直角坐標系,使,,并求出點坐標;(2)以原點為位似中心,相似比為2,在第一象限內(nèi)將放大,畫出放大后的圖形;(3)計算的面積.19.(5分)如圖,一農(nóng)戶要建一個矩形豬舍,豬舍的一邊利用長為12m的住房墻,另外三邊用25m長的建筑材料圍成,為方便進出,在垂直于住房墻的一邊留一個1m寬的門,所圍矩形豬舍的長、寬分別為多少時,豬舍面積為80m2?20.(8分)如圖,在△ABC中,∠C=90°,∠CAB=50°,按以下步驟作圖:①以點A為圓心,小于AC長為半徑畫弧,分別交AB、AC于點E、F;②分別以點E、F為圓心,大于EF長為半徑畫弧,兩弧相交于點G;③作射線AG,交BC邊于點D.則∠ADC的度數(shù)為()A.40° B.55° C.65° D.75°21.(10分)M中學(xué)為創(chuàng)建園林學(xué)校,購買了若干桂花樹苗,計劃把迎賓大道的一側(cè)全部栽上桂花樹(兩端必須各栽一棵),并且每兩棵樹的間隔相等,如果每隔5米栽1棵,則樹苗缺11棵;如果每隔6米栽1棵,則樹苗正好用完,求購買了桂花樹苗多少棵?22.(10分)如圖,四邊形ABCD的四個頂點分別在反比例函數(shù)與(x>0,0<m<n)的圖象上,對角線BD//y軸,且BD⊥AC于點P.已知點B的橫坐標為1.當(dāng)m=1,n=20時.①若點P的縱坐標為2,求直線AB的函數(shù)表達式.②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.四邊形ABCD能否成為正方形?若能,求此時m,n之間的數(shù)量關(guān)系;若不能,試說明理由.23.(12分)如圖,在矩形ABCD中,AB=3,AD=4,P沿射線BD運動,連接AP,將線段AP繞點P順時針旋轉(zhuǎn)90°得線段PQ.(1)當(dāng)點Q落到AD上時,∠PAB=____°,PA=_____,長為_____;(2)當(dāng)AP⊥BD時,記此時點P為P0,點Q為Q0,移動點P的位置,求∠QQ0D的大小;(3)在點P運動中,當(dāng)以點Q為圓心,BP為半徑的圓與直線BD相切時,求BP的長度;(4)點P在線段BD上,由B向D運動過程(包含B、D兩點)中,求CQ的取值范圍,直接寫出結(jié)果.24.(14分)已知:如圖,AB為⊙O的直徑,C是BA延長線上一點,CP切⊙O于P,弦PD⊥AB于E,過點B作BQ⊥CP于Q,交⊙O于H,(1)如圖1,求證:PQ=PE;(2)如圖2,G是圓上一點,∠GAB=30°,連接AG交PD于F,連接BF,若tan∠BFE=3,求∠C的度數(shù);(3)如圖3,在(2)的條件下,PD=6,連接QC交BC于點M,求QM的長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

比較OP與半徑的大小即可判斷.【詳解】,,,點P在外,故選B.【點睛】本題考查點與圓的位置關(guān)系,記?。狐c與圓的位置關(guān)系有3種設(shè)的半徑為r,點P到圓心的距離,則有:點P在圓外;點P在圓上;點P在圓內(nèi).2、A【解析】

根據(jù)“用一根繩子去量一根木頭的長、繩子還剩余4.5尺;將繩子對折再量木頭,則木頭還剩余1尺”可以列出相應(yīng)的方程組,本題得以解決.【詳解】由題意可得,,故選A.【點睛】本題考查由實際問題抽象出二元一次方程組,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的方程組.3、C【解析】分析:根據(jù)每個選項所涉及的數(shù)學(xué)知識進行分析判斷即可.詳解:A選項中,“五邊形的外角和為360°”是真命題,故不能選A;B選項中,“切線垂直于經(jīng)過切點的半徑”是真命題,故不能選B;C選項中,因為點(3,-2)關(guān)于y軸的對稱點的坐標是(-3,-2),所以該選項中的命題是假命題,所以可以選C;D選項中,“拋物線y=x2﹣4x+2017對稱軸為直線x=2”是真命題,所以不能選D.故選C.點睛:熟記:(1)凸多邊形的外角和都是360°;(2)切線的性質(zhì);(3)點P(a,b)關(guān)于y軸的對稱點為(-a,b);(4)拋物線的對稱軸是直線:等數(shù)學(xué)知識,是正確解答本題的關(guān)鍵.4、B【解析】

根據(jù)題意確定出小昱和阿帆所寫的數(shù)字,設(shè)小昱所寫的第n個數(shù)為101,根據(jù)規(guī)律確定出n的值,即可確定出阿帆在該頁寫的數(shù).【詳解】解:小昱所寫的數(shù)為1,3,5,1,…,101,…;阿帆所寫的數(shù)為1,8,15,22,…,設(shè)小昱所寫的第n個數(shù)為101,根據(jù)題意得:101=1+(n-1)×2,整理得:2(n-1)=100,即n-1=50,解得:n=51,則阿帆所寫的第51個數(shù)為1+(51-1)×1=1+50×1=1+350=2.故選B.【點睛】此題考查了有理數(shù)的混合運算,弄清題中的規(guī)律是解本題的關(guān)鍵.5、B【解析】

根據(jù)題意畫出圖形,連接AO并延長交BC于點D,則AD⊥BC,設(shè)OD=x,由三角形重心的性質(zhì)得AD=3x,利用銳角三角函數(shù)表示出BD的長,由垂徑定理表示出BC的長,然后根據(jù)面積法解答即可.【詳解】如圖,連接AO并延長交BC于點D,則AD⊥BC,設(shè)OD=x,則AD=3x,∵tan∠BAD=,∴BD=tan30°·AD=x,∴BC=2BD=2x,∵,∴×2x×3x=3,∴x=1所以該圓的內(nèi)接正三邊形的邊心距為1,故選B.【點睛】本題考查正多邊形和圓,三角形重心的性質(zhì),垂徑定理,銳角三角函數(shù),面積法求線段的長,解答本題的關(guān)鍵是明確題意,求出相應(yīng)的圖形的邊心距.6、A【解析】

首先設(shè)此多邊形為n邊形,根據(jù)題意得:180(n-2)=1080,即可求得n=8,再由多邊形的外角和等于360°,即可求得答案.【詳解】設(shè)此多邊形為n邊形,根據(jù)題意得:180(n-2)=1080,解得:n=8,∴這個正多邊形的每一個外角等于:360°÷8=45°.故選A.【點睛】此題考查了多邊形的內(nèi)角和與外角和的知識.注意掌握多邊形內(nèi)角和定理:(n-2)?180°,外角和等于360°.7、A【解析】試題分析:根據(jù)函數(shù)圖象右移減、左移加,上移加、下移減,可得答案.解:將二次函數(shù)y=x2的圖象向右平移1個單位,再向上平移2個單位后,所得圖象的函數(shù)表達式是y=(x﹣1)2+2,故選A.考點:二次函數(shù)圖象與幾何變換.8、B【解析】

此題可根據(jù)反比例函數(shù)圖象的對稱性得到A、B兩點關(guān)于原點對稱,再由S△ABM=1S△AOM并結(jié)合反比例函數(shù)系數(shù)k的幾何意義得到k的值.【詳解】根據(jù)雙曲線的對稱性可得:OA=OB,則S△ABM=1S△AOM=1,S△AOM=|k|=1,則k=±1.又由于反比例函數(shù)圖象位于一三象限,k>0,所以k=1.故選B.【點睛】本題主要考查了反比例函數(shù)y=中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)常考查的一個知識點.9、C【解析】分析:過O1、O2作直線,以O(shè)1O2上一點為圓心作一半徑為2的圓,將這個圓從左側(cè)與圓O1、圓O2同時外切的位置(即圓O3)開始向右平移,觀察圖形,并結(jié)合三個圓的半徑進行分析即可得到符合要求的圓的個數(shù).詳解:如下圖,(1)當(dāng)半徑為2的圓同時和圓O1、圓O2外切時,該圓在圓O3的位置;(2)當(dāng)半徑為2的圓和圓O1、圓O2都內(nèi)切時,該圓在圓O4的位置;(3)當(dāng)半徑為2的圓和圓O1外切,而和圓O2內(nèi)切時,該圓在圓O5的位置;綜上所述,符合要求的半徑為2的圓共有3個.故選C.點睛:保持圓O1、圓O2的位置不動,以直線O1O2上一個點為圓心作一個半徑為2的圓,觀察其從左至右平移過程中與圓O1、圓O2的位置關(guān)系,結(jié)合三個圓的半徑大小即可得到本題所求答案.10、D【解析】

找到從正面、左面、上看所得到的圖形即可,注意所有的看到的棱都應(yīng)表現(xiàn)在視圖中.【詳解】解:此幾何體的主視圖有兩排,從上往下分別有1,3個正方形;

左視圖有二列,從左往右分別有2,1個正方形;

俯視圖有三列,從上往下分別有3,1個正方形,

故選A.【點睛】本題考查了三視圖的知識,關(guān)鍵是掌握三視圖所看的位置.掌握定義是關(guān)鍵.此題主要考查了簡單組合體的三視圖,準確把握觀察角度是解題關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

作BD⊥AC于點D,在直角△ABD中,利用三角函數(shù)求得BD的長,然后在直角△BCD中,利用三角函數(shù)即可求得BC的長.【詳解】∠CBA=25°+50°=75°,作BD⊥AC于點D,則∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∠ABD=30°,∴∠CBD=75°﹣30°=45°,在直角△ABD中,BD=AB?sin∠CAB=20×sin60°=20×=10,在直角△BCD中,∠CBD=45°,則BC=BD=10×=10≈10×2.4=1(海里),故答案是:1.【點睛】本題考查了解直角三角形的應(yīng)用——方向角問題,正確求得∠CBD以及∠CAB的度數(shù)是解決本題的關(guān)鍵.12、1【解析】

根據(jù)函數(shù)值相等兩點關(guān)于對稱軸對稱,可得答案.【詳解】由點A(﹣1,4)、B(m,4)在拋物線y=a(x﹣1)2+h上,得:(﹣1,4)與(m,4)關(guān)于對稱軸x=1對稱,m﹣1=1﹣(﹣1),解得:m=1.故答案為:1.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征,利用函數(shù)值相等兩點關(guān)于對稱軸對稱得出m﹣1=1﹣(﹣1)是解題的關(guān)鍵.13、【解析】試題分析:根據(jù)網(wǎng)格,利用勾股定理求出AC的長,AB的長,以及AB邊上的高,利用三角形面積公式求出三角形ABC面積,而三角形ABC面積可以由AC與BD乘積的一半來求,利用面積法即可求出BD的長:根據(jù)勾股定理得:,由網(wǎng)格得:S△ABC=×2×4=4,且S△ABC=AC?BD=×5BD,∴×5BD=4,解得:BD=.考點:1.網(wǎng)格型問題;2.勾股定理;3.三角形的面積.14、4【解析】

根據(jù)銳角的余弦值等于鄰邊比對邊列式求解即可.【詳解】∵∠C=90°,AB=6,∴,∴BC=4.【點睛】本題考查了勾股定理和銳角三角函數(shù)的概念,熟練掌握銳角三角函數(shù)的定義是解答本題的關(guān)鍵.在Rt△ABC中,,,.15、①②③④⑤⑥⑦.【解析】

將△ABM繞點A逆時針旋轉(zhuǎn),使AB與AD重合,得到△ADH.證明△MAN≌△HAN,得到MN=NH,根據(jù)三角形周長公式計算判斷①;判斷出BM=DN時,MN最小,即可判斷出⑧;根據(jù)全等三角形的性質(zhì)判斷②④;將△ADF繞點A順時針性質(zhì)90°得到△ABH,連接HE.證明△EAH≌△EAF,得到∠HBE=90°,根據(jù)勾股定理計算判斷③;根據(jù)等腰直角三角形的判定定理判斷⑤;根據(jù)等腰直角三角形的性質(zhì)、三角形的面積公式計算,判斷⑥,根據(jù)點A到MN的距離等于正方形ABCD的邊長、三角形的面積公式計算,判斷⑦.【詳解】將△ABM繞點A逆時針旋轉(zhuǎn),使AB與AD重合,得到△ADH.則∠DAH=∠BAM,∵四邊形ABCD是正方形,∴∠BAD=90°,∵∠MAN=45°,∴∠BAN+∠DAN=45°,∴∠NAH=45°,在△MAN和△HAN中,,∴△MAN≌△HAN,∴MN=NH=BM+DN,①正確;∵BM+DN≥1,(當(dāng)且僅當(dāng)BM=DN時,取等號)∴BM=DN時,MN最小,∴BM=b,∵DH=BM=b,∴DH=DN,∵AD⊥HN,∴∠DAH=∠HAN=11.5°,在DA上取一點G,使DG=DH=b,∴∠DGH=45°,HG=DH=b,∵∠DGH=45°,∠DAH=11.5°,∴∠AHG=∠HAD,∴AG=HG=b,∴AB=AD=AG+DG=b+b=b=a,∴,∴,當(dāng)點M和點B重合時,點N和點C重合,此時,MN最大=AB,即:,∴≤≤1,⑧錯誤;∵MN=NH=BM+DN∴△CMN的周長=CM+CN+MN=CM+BM+CN+DN=CB+CD,∴△CMN的周長等于正方形ABCD的邊長的兩倍,②結(jié)論正確;∵△MAN≌△HAN,∴點A到MN的距離等于正方形ABCD的邊長AD,④結(jié)論正確;如圖1,將△ADF繞點A順時針性質(zhì)90°得到△ABH,連接HE.∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AD,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE1=BH1+BE1,∵BH=DF,EF=HE,∵EF1=BE1+DF1,③結(jié)論正確;∵四邊形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∴A、E、N、D四點共圓,∴∠ADN+∠AEN=180°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;⑤結(jié)論正確;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM=AF,AN=AE,如圖3,過點M作MP⊥AN于P,在Rt△APM中,∠MAN=45°,∴MP=AMsin45°,∵S△AMN=AN?MP=AM?AN?sin45°,S△AEF=AE?AF?sin45°,∴S△AMN:S△AEF=1,∴S△AMN=1S△AEF,⑥正確;∵點A到MN的距離等于正方形ABCD的邊長,∴S正方形ABCD:S△AMN==1AB:MN,⑦結(jié)論正確.即:正確的有①②③④⑤⑥⑦,故答案為①②③④⑤⑥⑦.【點睛】此題是四邊形綜合題,主要考查了正方形的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),解本題的關(guān)鍵是構(gòu)造全等三角形.16、【解析】分析:根據(jù)題意把李明步行和騎車各自所走路程表達出來,再結(jié)合步行和騎車所走總里程為2900米,列出方程即可.詳解:設(shè)他推車步行的時間為x分鐘,根據(jù)題意可得:80x+250(15-x)=2900.故答案為80x+250(15-x)=2900.點睛:弄清本題中的等量關(guān)系:李明推車步行的路程+李明騎車行駛的路程=2900是解題的關(guān)鍵.17、【解析】

根據(jù)二次根式的性質(zhì),被開方數(shù)大于等于0,可知:x-1≥0,解得x的范圍.【詳解】根據(jù)題意得:x-1≥0,解得:x≥1.故答案為:.【點睛】此題考查二次根式,解題關(guān)鍵在于掌握二次根式有意義的條件.三、解答題(共7小題,滿分69分)18、(1)作圖見解析;.(2)作圖見解析;(3)1.【解析】分析:(1)直接利用A,C點坐標得出原點位置進而得出答案;(2)利用位似圖形的性質(zhì)即可得出△A'B'C';(3)直接利用(2)中圖形求出三角形面積即可.詳解:(1)如圖所示,即為所求的直角坐標系;B(2,1);(2)如圖:△A'B'C'即為所求;(3)S△A'B'C'=×4×8=1.點睛:此題主要考查了位似變換以及三角形面積求法,正確得出對應(yīng)點位置是解題的關(guān)鍵.畫位似圖形的一般步驟為:①確定位似中心;②分別連接并延長位似中心和關(guān)鍵點;③根據(jù)位似比,確定位似圖形的關(guān)鍵點;④順次連接上述各點,得到放大或縮小的圖形.19、10,1.【解析】試題分析:可以設(shè)矩形豬舍垂直于住房墻一邊長為m,可以得出平行于墻的一邊的長為m,由題意得出方程求出邊長的值.試題解析:設(shè)矩形豬舍垂直于住房墻一邊長為m,可以得出平行于墻的一邊的長為m,由題意得化簡,得,解得:當(dāng)時,(舍去),當(dāng)時,,答:所圍矩形豬舍的長為10m、寬為1m.考點:一元二次方程的應(yīng)用題.20、C.【解析】試題分析:由作圖方法可得AG是∠CAB的角平分線,∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,故選C.考點:作圖—基本作圖.21、購買了桂花樹苗1棵【解析】分析:首先設(shè)購買了桂花樹苗x棵,然后根據(jù)題意列出一元一次方程,從而得出答案.詳解:設(shè)購買了桂花樹苗x棵,根據(jù)題意,得:5(x+11-1)=6(x-1),解得x=1.答:購買了桂花樹苗1棵.點睛:本題主要考查的是一元一次方程的應(yīng)用,屬于基礎(chǔ)題型.解決這個問題的關(guān)鍵就是找出等量關(guān)系以及路的長度與樹的棵樹之間的關(guān)系.22、(1)①;②四邊形是菱形,理由見解析;(2)四邊形能是正方形,理由見解析,m+n=32.【解析】

(1)①先確定出點A,B坐標,再利用待定系數(shù)法即可得出結(jié)論;

②先確定出點D坐標,進而確定出點P坐標,進而求出PA,PC,即可得出結(jié)論;

(2)先確定出B(1,),D(1,),進而求出點P的坐標,再求出A,C坐標,最后用AC=BD,即可得出結(jié)論.【詳解】(1)①如圖1,,反比例函數(shù)為,當(dāng)時,,,當(dāng)時,,,,設(shè)直線的解析式為,,,直線的解析式為;②四邊形是菱形,理由如下:如圖2,由①知,,軸,,點是線段的中點,,當(dāng)時,由得,,由得,,,,,,四邊形為平行四邊形,,四邊形是菱形;(2)四邊形能是正方形,理由:當(dāng)四邊形是正方形,記,的交點為,,當(dāng)時,,,,,,,,,,.【點睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,平行四邊形的判定,菱形的判定和性質(zhì),正方形的性質(zhì),判斷出四邊形ABCD是平行四邊形是解本題的關(guān)鍵.23、(1)45,,π;(2)滿足條件的∠QQ0D為45°或135°;(3)BP的長為或;(4)≤CQ≤7.【解析】

(1)由已知,可知△APQ為等腰直角三角形,可得∠PAB,再利用三角形相似可得PA,及弧AQ的長度;(2)分點Q在BD上方和下方的情況討論求解即可.(3)分別討論點Q在BD上方和下方的情況,利用切線性質(zhì),在由(2)用BP0表示BP,由射影定理計算即可;(4)由(2)可知,點Q在過點Qo,且與BD夾角為45°的線段EF上運動,有圖形可知,當(dāng)點Q運動到點E時,CQ最長為7,再由垂線段最短,應(yīng)用面積法求CQ最小值.【詳解】解:(1)如圖,過點P做PE⊥AD于點E由已知,AP=PQ,∠APQ=90°∴△APQ為等腰直角三角形∴∠PAQ=∠PAB=45°設(shè)PE=x,則AE=x,DE=4﹣x∵PE∥AB∴△DEP∽△DAB∴=∴=解得x=∴PA=PE=∴弧AQ的長為?2π?=π.故答案為45,,π.(2)如圖,過點Q做QF⊥BD于點F由∠APQ=90°,∴∠APP0+∠QPD=90°∵∠P0AP+∠APP0=90°∴∠QPD=∠P0AP∵AP=PQ∴△APP0≌△PQF∴AP0=PF,P0P=QF∵AP0=P0Q0∴Q0D=P0P∴QF=FQ0∴∠QQ0D=45°.當(dāng)點Q在BD的右下方時,同理可得∠PQ0Q=45°,此時∠QQ0D=135°,綜上所述,滿足條件的∠QQ0D為45°或135°.(3)如圖當(dāng)點Q直線BD上方,當(dāng)以點Q為圓心,BP為半徑的圓與直線BD相切時過點Q做QF⊥BD于點F,則QF=BP由(2)可知,PP0=BP∴BP0=BP∵AB=3,AD=4∴BD=5∵△ABP0∽△DBA∴AB2=BP0?BD∴9=BP×5∴BP=同理,當(dāng)點Q位于BD下方時,可求得BP=故BP的長為或(4)由(2)可知∠QQ0D=45°則如圖,點Q在過點Q0,且與BD夾角為45°的線段EF上運動,當(dāng)點P與點B重合時,點Q與點F重合,此時,CF=4﹣3=1當(dāng)點P與點D重合時,點Q與點E重合,此時,CE=4+3=7∴EF===5過點C做CH⊥EF于點H由面積法可知CH===∴CQ的取值范圍為:≤CQ≤7【點睛】本題是幾何綜合題,考查了三角形全等、勾股定理、切線性質(zhì)以及三角形相似的相關(guān)知識,應(yīng)用了分類討論和數(shù)形結(jié)合的數(shù)學(xué)思想.24、(1)證明見解析(2)30°(3)QM=【解析】試題分析:(1)連接OP,PB,由已知易證∠OBP=∠OPB=∠QBP,從而可得BP平分∠OBQ,結(jié)合BQ⊥CP于點Q,PE⊥AB于點E即可由角平分線的性質(zhì)得到PQ=PE;(2)如下圖2,連接OP,則由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,設(shè)EF=x,則由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,從而可得AB=,則OP=OA=,結(jié)合AE=可得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論