




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
貴州省畢節市黔西縣樹立中學2024年高考仿真卷數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,,則的值為()A. B.C. D.2.已知雙曲線的漸近線方程為,且其右焦點為,則雙曲線的方程為()A. B. C. D.3.已知的部分圖象如圖所示,則的表達式是()A. B.C. D.4.曲線在點處的切線方程為,則()A. B. C.4 D.85.復數的模為().A. B.1 C.2 D.6.若直線與圓相交所得弦長為,則()A.1 B.2 C. D.37.,則與位置關系是()A.平行 B.異面C.相交 D.平行或異面或相交8.天干地支,簡稱為干支,源自中國遠古時代對天象的觀測.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”稱為十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”稱為十二地支.干支紀年法是天干和地支依次按固定的順序相互配合組成,以此往復,60年為一個輪回.現從農歷2000年至2019年共20個年份中任取2個年份,則這2個年份的天干或地支相同的概率為()A. B. C. D.9.若復數,其中為虛數單位,則下列結論正確的是()A.的虛部為 B. C.的共軛復數為 D.為純虛數10.總體由編號為01,02,...,39,40的40個個體組成.利用下面的隨機數表選取5個個體,選取方法是從隨機數表(如表)第1行的第4列和第5列數字開始由左到右依次選取兩個數字,則選出來的第5個個體的編號為()A.23 B.21 C.35 D.3211.執行如圖所示的程序框圖,則輸出的結果為()A. B. C. D.12.已知向量,,則與的夾角為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若隨機變量的分布列如表所示,則______,______.-10114.銳角中,角,,所對的邊分別為,,,若,則的取值范圍是______.15.已知多項式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,則a4=________,a5=________.16.已知函數,若關于x的方程有且只有兩個不相等的實數根,則實數a的取值范圍是_______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列是公比為正數的等比數列,其前項和為,滿足,且成等差數列.(1)求的通項公式;(2)若數列滿足,求的值.18.(12分)如圖,已知四棱錐,底面為邊長為2的菱形,平面,,是的中點,.(Ⅰ)證明:;(Ⅱ)若為上的動點,求與平面所成最大角的正切值.19.(12分)2019年入冬時節,長春市民為了迎接2022年北京冬奧會,增強身體素質,積極開展冰上體育鍛煉.現從速滑項目中隨機選出100名參與者,并由專業的評估機構對他們的鍛煉成果進行評估打分(滿分為100分)并且認為評分不低于80分的參與者擅長冰上運動,得到如圖所示的頻率分布直方圖:(1)求的值;(2)將選取的100名參與者的性別與是否擅長冰上運動進行統計,請將下列列聯表補充完整,并判斷能否在犯錯誤的概率在不超過0.01的前提下認為擅長冰上運動與性別有關系?擅長不擅長合計男性30女性50合計1000.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(,其中)20.(12分)已知函數,且曲線在處的切線方程為.(1)求的極值點與極值.(2)當,時,證明:.21.(12分)已知函數,其中為自然對數的底數,.(1)若曲線在點處的切線與直線平行,求的值;(2)若,問函數有無極值點?若有,請求出極值點的個數;若沒有,請說明理由.22.(10分)設函數.(Ⅰ)討論函數的單調性;(Ⅱ)如果對所有的≥0,都有≤,求的最小值;(Ⅲ)已知數列中,,且,若數列的前n項和為,求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
利用倍角公式求得的值,利用誘導公式求得的值,利用同角三角函數關系式求得的值,進而求得的值,最后利用正切差角公式求得結果.【詳解】,,,,,,,,故選:D.【點睛】該題考查的是有關三角函數求值問題,涉及到的知識點有誘導公式,正切倍角公式,同角三角函數關系式,正切差角公式,屬于基礎題目.2、B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點:雙曲線方程.3、D【解析】
由圖象求出以及函數的最小正周期的值,利用周期公式可求得的值,然后將點的坐標代入函數的解析式,結合的取值范圍求出的值,由此可得出函數的解析式.【詳解】由圖象可得,函數的最小正周期為,.將點代入函數的解析式得,得,,,則,,因此,.故選:D.【點睛】本題考查利用圖象求三角函數解析式,考查分析問題和解決問題的能力,屬于中等題.4、B【解析】
求函數導數,利用切線斜率求出,根據切線過點求出即可.【詳解】因為,所以,故,解得,又切線過點,所以,解得,所以,故選:B【點睛】本題主要考查了導數的幾何意義,切線方程,屬于中檔題.5、D【解析】
利用復數代數形式的乘除運算化簡,再由復數模的計算公式求解.【詳解】解:,復數的模為.故選:D.【點睛】本題主要考查復數代數形式的乘除運算,考查復數模的求法,屬于基礎題.6、A【解析】
將圓的方程化簡成標準方程,再根據垂徑定理求解即可.【詳解】圓的標準方程,圓心坐標為,半徑為,因為直線與圓相交所得弦長為,所以直線過圓心,得,即.故選:A【點睛】本題考查了根據垂徑定理求解直線中參數的方法,屬于基礎題.7、D【解析】結合圖(1),(2),(3)所示的情況,可得a與b的關系分別是平行、異面或相交.選D.8、B【解析】
利用古典概型概率計算方法分析出符合題意的基本事件個數,結合組合數的計算即可出求得概率.【詳解】20個年份中天干相同的有10組(每組2個),地支相同的年份有8組(每組2個),從這20個年份中任取2個年份,則這2個年份的天干或地支相同的概率.故選:B.【點睛】本小題主要考查古典概型的計算,考查組合數的計算,考查學生分析問題的能力,難度較易.9、D【解析】
將復數整理為的形式,分別判斷四個選項即可得到結果.【詳解】的虛部為,錯誤;,錯誤;,錯誤;,為純虛數,正確本題正確選項:【點睛】本題考查復數的模長、實部與虛部、共軛復數、復數的分類的知識,屬于基礎題.10、B【解析】
根據隨機數表法的抽樣方法,確定選出來的第5個個體的編號.【詳解】隨機數表第1行的第4列和第5列數字為4和6,所以從這兩個數字開始,由左向右依次選取兩個數字如下46,64,42,16,60,65,80,56,26,16,55,43,50,24,23,54,89,63,21,…其中落在編號01,02,…,39,40內的有:16,26,16,24,23,21,…依次不重復的第5個編號為21.故選:B【點睛】本小題主要考查隨機數表法進行抽樣,屬于基礎題.11、D【解析】循環依次為直至結束循環,輸出,選D.點睛:算法與流程圖的考查,側重于對流程圖循環結構的考查.先明晰算法及流程圖的相關概念,包括選擇結構、循環結構、偽代碼,其次要重視循環起點條件、循環次數、循環終止條件,更要通過循環規律,明確流程圖研究的數學問題,是求和還是求項.12、B【解析】
由已知向量的坐標,利用平面向量的夾角公式,直接可求出結果.【詳解】解:由題意得,設與的夾角為,,由于向量夾角范圍為:,∴.故選:B.【點睛】本題考查利用平面向量的數量積求兩向量的夾角,注意向量夾角的范圍.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
首先求得a的值,然后利用均值的性質計算均值,最后求得的值,由方差的性質計算的值即可.【詳解】由題意可知,解得(舍去)或.則,則,由方差的計算性質得.【點睛】本題主要考查分布列的性質,均值的計算公式,方差的計算公式,方差的性質等知識,意在考查學生的轉化能力和計算求解能力.14、【解析】
由余弦定理,正弦定理得出,從而得出,推出的范圍,由余弦函數的性質得出的范圍,再利用二倍角公式化簡,即可得出答案.【詳解】由題意得由正弦定理得化簡得又為銳角三角形,則,,.故答案為【點睛】本題主要考查了正弦定理和余弦定理的應用,屬于中檔題.15、164【解析】
只需令x=0,易得a5,再由(x+1)3(x+2)2=(x+1)5+2(x+1)4+(x+1)3,可得a4=+2+.【詳解】令x=0,得a5=(0+1)3(0+2)2=4,而(x+1)3(x+2)2=(x+1)3[(x+1)2+2(x+1)+1]=(x+1)5+2(x+1)4+(x+1)3;則a4=+2+=5+8+3=16.故答案為:16,4.【點睛】本題主要考查了多項式展開中的特定項的求解,可以用賦值法也可以用二項展開的通項公式求解,屬于中檔題.16、【解析】
畫出函數的圖象,再畫的圖象,求出一個交點時的的值,然后平行移動可得有兩個交點時的的范圍.【詳解】函數的圖象如圖所示:因為方程有且只有兩個不相等的實數根,所以圖象與直線有且只有兩個交點即可,當過點時兩個函數有一個交點,即時,與函數有一個交點,由圖象可知,直線向下平移后有兩個交點,可得,故答案為:.【點睛】本題主要考查了方程的跟與函數的圖象交點的轉化,數形結合的思想,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)由公比表示出,由成等差數列可求得,從而數列的通項公式;(2)求(1)得,然后對和式兩兩并項后利用等差數列的前項和公式可求解.【詳解】(1)∵是等比數列,且成等差數列∴,即∴,解得:或∵,∴∵∴(2)∵∴【點睛】本題考查等比數列的通項公式,考查并項求和法及等差數列的項和公式.本題求數列通項公式所用方法為基本量法,求和是用并項求和法.數列的求和除公式法外,還有錯位相關法、裂項相消法、分組(并項)求和法等等.18、(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(Ⅰ)由底面為邊長為2的菱形,平面,,易證平面,可得;(Ⅱ)連結,由(Ⅰ)易知為與平面所成的角,在中,可求得.試題解析:(Ⅰ)∵四邊形為菱形,且,∴為正三角形,又為中點,∴;又,∴,∵平面,又平面,∴,∴平面,又平面,∴;(Ⅱ)連結,由(Ⅰ)知平面,∴為與平面所成的角,在中,,最大當且僅當最短,即時最大,依題意,此時,在中,,∴,,∴與平面所成最大角的正切值為.考點:1.線線垂直證明;2.求線面角.19、(1)(2)填表見解析;不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系【解析】
(1)利用頻率分布直方圖小長方形的面積和為列方程,解方程求得的值.(2)根據表格數據填寫列聯表,計算出的值,由此判斷不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系.【詳解】(1)由題意,解得.(2)由頻率分布直方圖可得不擅長冰上運動的人數為.完善列聯表如下:擅長不擅長合計男性203050女性104050合計3070100,對照表格可知,,不能在犯錯誤的概率不超過0.01的前提下認為擅長冰上運動與性別有關系.【點睛】本小題主要考查根據頻率分布直方圖計算小長方形的高,考查列聯表獨立性檢驗,屬于基礎題.20、(1)極小值點為,極小值為,無極大值;(2)證明見解析【解析】
先對函數求導,結合已知及導數的幾何意義可求,結合單調性即可求解函數的極值點及極值;令,問題可轉化為求解函數的最值,結合導數可求.【詳解】(1)由題得函數的定義域為.,由已知得,解得∴,令,得令,得,∴在上單調遞增.令,得∴在上單調遞減∴的極小值點為,極小值為,無極大值.(2)證明:由(1)知,∴,令,即∵,,∴恒成立.∴在上單調遞增又,∴在上恒成立∴在上恒成立∴,即∴【點睛】本題考查了利用導數研究函數的極值問題,考查利用導數證明不等式,意在考查學生對這些知識的理解掌握水平,屬于中檔題.21、(1)(2)沒有,理由見解析【解析】
(1)求導,研究函數在x=0處的導數,等于切線斜率,即得解;(2)對f(x)求導,構造,可證得,得到,即得解【詳解】(1)由題意得,∵曲線在點處的切線與直線平行,∴切線的斜率為,解得.(2)當時,,,設,則,則函數在區間上單調遞減,在區間上單調遞增,又函數,故恒成立,∴函數在定義域內單調遞增,函數不存在極值點.【點睛】本題考查了導數在切線問題和函數極值問題中的應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.22、(Ⅰ)函數在上單調遞減,在單調遞增;(Ⅱ);(Ⅲ)證明見解析.【解析】
(Ⅰ)先求出函數f(x)的導數,通過解關于導數的不等式,從而求出函數的單調區間;(Ⅱ)設g(x)=f(x)﹣ax,先求出函數g(x)的導數,通過討論a的范圍,得到函數的單調性,從而求出a的最小值;(Ⅲ)先求出數列是以為首項,1為公差的等差數列,,,問題轉化為證明:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 智能設備與數據驅動農業生產的協同效應
- 2025至2030年中國水性紙張復膜膠行業投資前景及策略咨詢報告
- 2025至2030年中國毛氈板行業投資前景及策略咨詢報告
- 2025至2030年中國植物根尖縱切片行業投資前景及策略咨詢報告
- 2025至2030年中國柔性燈箱行業投資前景及策略咨詢報告
- 2025至2030年中國有粘結預應力鋼絞線行業投資前景及策略咨詢報告
- 2025至2030年中國絲絨毯行業投資前景及策略咨詢報告
- 2025年春新青島版1年級數學下冊全冊教學課件
- 回收網點建設與運營中的環境影響評估與管理
- 2026版大一輪高考數學-第一章 必刷小題1 集合、常用邏輯用語、不等式
- 普通話期末測試題及答案
- 2025年八年級學業水平考試生物試卷 (附答案)
- XX學校(幼兒園)食堂管理各崗位廉政(廉潔)風險點及防控措施一覽表
- 2025中國建材集團有限公司總部招聘4人筆試參考題庫附帶答案詳解
- 2025年蕪湖市公共交通集團有限責任公司招聘筆試參考題庫附帶答案詳解
- 拆除與清運合同協議書
- 2025年計算機Photoshop排版試題
- 2025屆湖北省武漢市高三五月模擬訓練物理(含答案)
- 外墻腳手架懸挑專項施工方案
- 2025至2030年中國雞胸行業投資前景及策略咨詢報告
- 煤礦重大危險源評估
評論
0/150
提交評論