




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省武漢市蔡甸區中考數學適應性模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉90°后得到△AB′C′(點B的對應點是點B′,點C的對應點是點C′,連接CC′.若∠CC′B′=32°,則∠B的大小是()A.32° B.64° C.77° D.87°2.隨機擲一枚均勻的硬幣兩次,至少有一次正面朝上的概率為()A. B. C. D.3.黃河是中華民族的象征,被譽為母親河,黃河壺口瀑布位于我省吉縣城西45千米處,是黃河上最具氣勢的自然景觀.其落差約30米,年平均流量1010立方米/秒.若以小時作時間單位,則其年平均流量可用科學記數法表示為()A.6.06×104立方米/時 B.3.136×106立方米/時C.3.636×106立方米/時 D.36.36×105立方米/時4.如圖,點F是ABCD的邊AD上的三等分點,BF交AC于點E,如果△AEF的面積為2,那么四邊形CDFE的面積等于()A.18 B.22 C.24 D.465.“一般的,如果二次函數y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數根.——蘇科版《數學》九年級(下冊)P21”參考上述教材中的話,判斷方程x2﹣2x=﹣2實數根的情況是()A.有三個實數根 B.有兩個實數根 C.有一個實數根 D.無實數根6.某校八(2)班6名女同學的體重(單位:kg)分別為35,36,38,40,42,42,則這組數據的中位數是()A.38 B.39 C.40 D.427.如圖,矩形ABCD中,AB=8,BC=1.點E在邊AB上,點F在邊CD上,點G、H在對角線AC上.若四邊形EGFH是菱形,則AE的長是()A.2 B.3 C.5 D.68.濕地旅游愛好者小明了解到鄂東南市水資源總量為42.4億立方米,其中42.4億用科學記數法可表示為()A.42.4×109 B.4.24×108 C.4.24×109 D.0.424×1089.下列計算正確的是()A.3a﹣2a=1 B.a2+a5=a7 C.(ab)3=ab3 D.a2?a4=a610.如圖,已知Rt△ABC中,∠BAC=90°,將△ABC繞點A順時針旋轉,使點D落在射線CA上,DE的延長線交BC于F,則∠CFD的度數為()A.80° B.90° C.100° D.120°二、填空題(本大題共6個小題,每小題3分,共18分)11.把直線y=-x+3向上平移m個單位后,與直線y=2x+4的交點在第一象限,則m的取值范圍是_________________.12.化簡:3213.分解因式:x2y﹣xy2=_____.14.如圖,一艘海輪位于燈塔P的北偏東方向60°,距離燈塔為4海里的點A處,如果海輪沿正南方向航行到燈塔的正東位置,海輪航行的距離AB長_____海里.15.如圖,在△ABC中,∠ACB=90°,∠B=60°,AB=12,若以點A為圓心,AC為半徑的弧交AB于點E,以點B為圓心,BC為半徑的弧交AB于點D,則圖中陰影部分圖形的面積為__(保留根號和π)16.當x________時,分式有意義.三、解答題(共8題,共72分)17.(8分)如圖,某同學在測量建筑物AB的高度時,在地面的C處測得點A的仰角為30°,向前走60米到達D處,在D處測得點A的仰角為45°,求建筑物AB的高度.18.(8分)已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG∥DB交CB的延長線于G.求證:△ADE≌△CBF;若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結論.19.(8分)如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.(1)求證:ED為⊙O的切線;(2)若⊙O的半徑為3,ED=4,EO的延長線交⊙O于F,連DF、AF,求△ADF的面積.20.(8分)省教育廳決定在全省中小學開展“關注校車、關愛學生”為主題的交通安全教育宣傳周活動,某中學為了了解本校學生的上學方式,在全校范圍內隨機抽查了部分學生,將收集的數據繪制成如下兩幅不完整的統計圖(如圖所示),請根據圖中提供的信息,解答下列問題.m=%,這次共抽取名學生進行調查;并補全條形圖;在這次抽樣調查中,采用哪種上學方式的人數最多?如果該校共有1500名學生,請你估計該校騎自行車上學的學生有多少名?21.(8分)如圖,在菱形ABCD中,對角線AC與BD交于點O.過點C作BD的平行線,過點D作AC的平行線,兩直線相交于點E.求證:四邊形OCED是矩形;若CE=1,DE=2,ABCD的面積是.22.(10分)為提高市民的環保意識,倡導“節能減排,綠色出行”,某市計劃在城區投放一批“共享單車”這批單車分為A,B兩種不同款型,其中A型車單價400元,B型車單價320元.今年年初,“共享單車”試點投放在某市中心城區正式啟動.投放A,B兩種款型的單車共100輛,總價值36800元.試問本次試點投放的A型車與B型車各多少輛?試點投放活動得到了廣大市民的認可,該市決定將此項公益活動在整個城區全面鋪開.按照試點投放中A,B兩車型的數量比進行投放,且投資總價值不低于184萬元.請問城區10萬人口平均每100人至少享有A型車與B型車各多少輛?23.(12分)在等邊三角形ABC中,點P在△ABC內,點Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求證:△ABP≌△CAQ;請判斷△APQ是什么形狀的三角形?試說明你的結論.24.解不等式組:并寫出它的所有整數解.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:由旋轉的性質可知,AC=AC′,∵∠CAC′=90°,可知△CAC′為等腰直角三角形,則∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故選C.考點:旋轉的性質.2、D【解析】
先求出兩次擲一枚硬幣落地后朝上的面的所有情況,再根據概率公式求解.【詳解】隨機擲一枚均勻的硬幣兩次,落地后情況如下:至少有一次正面朝上的概率是,故選:D.【點睛】本題考查了隨機事件的概率,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率.3、C【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】1010×360×24=3.636×106立方米/時,故選C.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.4、B【解析】
連接FC,先證明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根據點F是□ABCD的邊AD上的三等分點得出S△FCD=2S△AFC,四邊形CDFE的面積=S△FCD+S△EFC,再代入△AEF的面積為2即可求出四邊形CDFE的面積.【詳解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴==,∵△AEF與△EFC高相等,∴S△EFC=3S△AEF,∵點F是□ABCD的邊AD上的三等分點,∴S△FCD=2S△AFC,∵△AEF的面積為2,∴四邊形CDFE的面積=S△FCD+S△EFC=16+6=22.故選B.【點睛】本題考查了相似三角形的應用與三角形的面積,解題的關鍵是熟練的掌握相似三角形的應用與三角形的面積的相關知識點.5、C【解析】試題分析:由得,,即是判斷函數與函數的圖象的交點情況.因為函數與函數的圖象只有一個交點所以方程只有一個實數根故選C.考點:函數的圖象點評:函數的圖象問題是初中數學的重點和難點,是中考常見題,在壓軸題中比較常見,要特別注意.6、B【解析】
根據中位數的定義求解,把數據按大小排列,第3、4個數的平均數為中位數.【詳解】解:由于共有6個數據,
所以中位數為第3、4個數的平均數,即中位數為=39,
故選:B.【點睛】本題主要考查了中位數.要明確定義:將一組數據從小到大(或從大到小)重新排列后,若這組數據的個數是奇數,則最中間的那個數叫做這組數據的中位數;若這組數據的個數是偶數,則最中間兩個數的平均數是這組數據的中位數.7、C【解析】試題分析:連接EF交AC于點M,由四邊形EGFH為菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易證△FMC≌△EMA,根據全等三角形的性質可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案選C.考點:菱形的性質;矩形的性質;勾股定理;銳角三角函數.8、C【解析】
科學記數法的表示形式為的形式,其中為整數.確定的值時,要看把原數變成時,小數點移動了多少位,的絕對值與小數點移動的位數相同.當原數絕對值>1時,是正數;當原數的絕對值<1時,是負數.【詳解】42.4億=4240000000,用科學記數法表示為:4.24×1.故選C.【點睛】考查科學記數法,掌握絕對值大于1的數的表示方法是解題的關鍵.9、D【解析】
根據合并同類項法則、積的乘方及同底數冪的乘法的運算法則依次計算后即可解答.【詳解】∵3a﹣2a=a,∴選項A不正確;∵a2+a5≠a7,∴選項B不正確;∵(ab)3=a3b3,∴選項C不正確;∵a2?a4=a6,∴選項D正確.故選D.【點睛】本題考查了合并同類項法則、積的乘方及同底數冪的乘法的運算法則,熟練運用法則是解決問題的關鍵.10、B【解析】
根據旋轉的性質得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根據三角形外角性質得出∠CFD=∠B+∠BEF,代入求出即可.【詳解】解:∵將△ABC繞點A順時針旋轉得到△ADE,∴△ABC≌△ADE,∴∠B=∠D,∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,∴∠CFD=∠B+∠BEF=90°,故選:B.【點睛】本題考查了旋轉的性質,全等三角形的性質和判定,三角形內角和定理,三角形外角性質的應用,掌握旋轉變換的性質是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、m>1【解析】試題分析:直線y=-x+3向上平移m個單位后可得:y=-x+3+m,求出直線y=-x+3+m與直線y=2x+4的交點,再由此點在第一象限可得出m的取值范圍.試題解析:直線y=-x+3向上平移m個單位后可得:y=-x+3+m,聯立兩直線解析式得:,解得:,即交點坐標為(,),∵交點在第一象限,∴,解得:m>1.考點:一次函數圖象與幾何變換.12、-6【解析】
根據二次根式的乘法運算法則以及絕對值的性質和二次根式的化簡分別化簡整理得出即可:【詳解】32故答案為-613、xy(x﹣y)【解析】原式=xy(x﹣y).故答案為xy(x﹣y).14、1【解析】分析:首先由方向角的定義及已知條件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB∥NP,根據平行線的性質得出∠A=∠NPA=60°.然后解Rt△ABP,得出AB=AP?cos∠A=1海里.詳解:如圖,由題意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=60°.在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP?cos∠A=4×cos60°=4×=1海里.故答案為1.點睛:本題考查了解直角三角形的應用-方向角問題,平行線的性質,三角函數的定義,正確理解方向角的定義是解題的關鍵.15、15π?18.【解析】
根據扇形的面積公式:S=分別計算出S扇形ACE,S扇形BCD,并且求出三角形ABC的面積,最后由S陰影部分=S扇形ACE+S扇形BCD-S△ABC即可得到答案.【詳解】S陰影部分=S扇形ACE+S扇形BCD-S△ABC,∵S扇形ACE==12π,S扇形BCD==3π,S△ABC=×6×6=18,∴S陰影部分=12π+3π?18=15π?18.故答案為15π?18.【點睛】本題考查了扇形面積的計算,解題的關鍵是熟練的掌握扇形的面積公式.16、x≠3【解析】由題意得x-3≠0,∴x≠3.三、解答題(共8題,共72分)17、(30+30)米.【解析】
解:設建筑物AB的高度為x米在Rt△ABD中,∠ADB=45°∴AB=DB=x∴BC=DB+CD=x+60在Rt△ABC中,∠ACB=30°,∴tan∠ACB=∴∴∴x=30+30∴建筑物AB的高度為(30+30)米18、(1)證明見解析(2)當四邊形BEDF是菱形時,四邊形AGBD是矩形;證明見解析;【解析】
(1)在證明全等時常根據已知條件,分析還缺什么條件,然后用(SAS,ASA,SSS)來證明全等;(2)先由菱形的性質得出AE=BE=DE,再通過角之間的關系求出∠2+∠3=90°即∠ADB=90°,所以判定四邊形AGBD是矩形.【詳解】解:證明:∵四邊形是平行四邊形,∴,,.∵點、分別是、的中點,∴,.∴.在和中,,∴.解:當四邊形是菱形時,四邊形是矩形.證明:∵四邊形是平行四邊形,∴.∵,∴四邊形是平行四邊形.∵四邊形是菱形,∴.∵,∴.∴,.∵,∴.∴.即.∴四邊形是矩形.【點睛】本題主要考查了平行四邊形的基本性質和矩形的判定及全等三角形的判定.平行四邊形基本性質:①平行四邊形兩組對邊分別平行;②平行四邊形的兩組對邊分別相等;③平行四邊形的兩組對角分別相等;④平行四邊形的對角線互相平分.三角形全等的判定條件:SSS,SAS,AAS,ASA.19、(1)見解析;(2)△ADF的面積是.【解析】試題分析:(1)連接OD,CD,求出∠BDC=90°,根據OE∥AB和OA=OC求出BE=CE,推出DE=CE,根據SSS證△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;
(2)過O作OM⊥AB于M,過F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根據sin∠BAC=,求出OM,根據cos∠BAC=,求出AM,根據垂徑定理求出AD,代入三角形的面積公式求出即可.試題解析:(1)證明:連接OD,CD,∵AC是⊙O的直徑,∴∠CDA=90°=∠BDC,∵OE∥AB,CO=AO,∴BE=CE,∴DE=CE,∵在△ECO和△EDO中,∴△ECO≌△EDO,∴∠EDO=∠ACB=90°,即OD⊥DE,OD過圓心O,∴ED為⊙O的切線.(2)過O作OM⊥AB于M,過F作FN⊥AB于N,則OM∥FN,∠OMN=90°,∵OE∥AB,∴四邊形OMFN是矩形,∴FN=OM,∵DE=4,OC=3,由勾股定理得:OE=5,∴AC=2OC=6,∵OE∥AB,∴△OEC∽△ABC,∴,∴,∴AB=10,在Rt△BCA中,由勾股定理得:BC==8,sin∠BAC=,即,OM==FN,∵cos∠BAC=,∴AM=由垂徑定理得:AD=2AM=,即△ADF的面積是AD×FN=××=.答:△ADF的面積是.【點睛】考查了切線的性質和判定,勾股定理,三角形的面積,垂徑定理,直角三角形的斜邊上中線性質,全等三角形的性質和判定等知識點的運用,通過做此題培養了學生的分析問題和解決問題的能力.20、(1)、26%;50;(2)、公交車;(3)、300名.【解析】試題分析:(1)、用1減去其它3個的百分比,從而得出m的值;根據乘公交車的人數和百分比得出總人數,然后求出騎自行車的人數,將圖形補全;(2)、根據條形統計圖得出哪種人數最多;(3)、根據全校的總人數×騎自行車的百分比得出人數.試題解析:(1)、1﹣14%﹣20%﹣40%=26%;20÷40%=50;騎自行車人數:50-20-13-7=10(名)則條形圖如圖所示:(2)、由圖可知,采用乘公交車上學的人數最多(3)、該校騎自行車上學的人數約為:1500×20%=300(名).答:該校騎自行車上學的學生有300名.考點:統計圖21、(1)證明見解析;(2)1.【解析】【分析】(1)欲證明四邊形OCED是矩形,只需推知四邊形OCED是平行四邊形,且有一內角為90度即可;(2)由菱形的對角線互相垂直平分和菱形的面積公式解答.【詳解】(1)∵四邊形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四邊形OCED是平行四邊形,又∠COD=90°,∴平行四邊形OCED是矩形;(2)由(1)知,平行四邊形OCED是矩形,則CE=OD=1,DE=OC=2.∵四邊形ABCD是菱形,∴AC=2OC=1,BD=2OD=2,∴菱形ABCD的面積為:AC?BD=×1×2=1,故答案為1.【點睛】本題考查了矩形的判定與性質,菱形的性質,熟練掌握矩形的判定及性質、菱形的性質是解題的關鍵.22、(1)本次試點投放的A型車60輛、B型車40輛;(2)3輛;2輛【解析】分析:(1)設本次試點投放的A型車x輛、B型車y輛,根據“兩種款型的單車共100輛,總價值36800元”列方程組求解可得;(2)由(1)知A、B型車輛的數量比為3:2,據此設整個城區全面鋪開時投放的A型車3a輛、B型車2a輛,根據“投資總價值不低于184萬元”列出關于a的不等式,解之求得a的范圍,進一步求解可得.詳解:(1)設本次試點投放的A型車x輛
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB32/T 4609-2023地表水環境質量監測網斷面(點位)標識設置與管理技術規范
- 2025年水族陶瓷產品行業深度研究分析報告
- 2025年氣包網絡彈力紗行業深度研究分析報告
- 2025年變配電保護自動化行業調查研究報告
- 天然氣項目(一期20×104 nm3d)環境影響評估報告書
- 公共服務項目合同管理流程
- 2025年工廠夏季制服項目市場調查研究報告
- 原材料采購合同
- 2025-2030中國甘蔗榨汁機械行業市場現狀供需分析及投資評估規劃分析研究報告
- 2025-2030中國牧草飼育奶油行業市場現狀供需分析及投資評估規劃分析研究報告
- 公司差旅費報銷單
- 《華為國際化之路》課件
- 高空作業安全責任協議書防盜網
- 關于地下室滲漏水問題的總結及堵漏措施
- (完整版)聚乙烯課件
- 《碳計量》教學大綱
- 公司“三重一大”決策制度實施辦法
- 商務談判說課精課件
- 微信視頻號代運營合同范本
- 【基于近五年數據的鴻星爾克財務報表分析15000字】
- CNN 卷積神經網絡介紹
評論
0/150
提交評論