




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
事業單位招錄行測數量關系專項強化真題試卷第一部分單選題(200題)1、小張購買了2個蘋果、3根香蕉、4個面包和5塊蛋糕,共消費58元。如果四種商品的單價都是正整數且各不相同,則每塊蛋糕的價格最高可能為多少元?()
A、5
B、6
C、7
D、8
【答案】:答案:D
解析:設蘋果、香蕉、面包、蛋糕的單價分別為x、y、z、w,根據共消費58元,得2x+3y+4z+5w=58。代入排除,根據最高,優先從值最大的選項代入。D選項,當w=8時,可得2x+3y+4z=18,由2x、4z、18均為偶數,則3y為偶數,即y為偶數且小于6。當y=2,有2x+4z=12,即x+2z=6,均為正整數且各不相同,若z=1,則x=4,此時滿足題意。故選D。2、2,3,1,2,6,7,()
A、9
B、5
C、11
D、24
【答案】:答案:B
解析:依次將相隔兩項做和2+1=3、3+2=5、1+6=7、2+7=9,是公差為2的等差數列。即所填數字為(9+2)-6=5。故選B。3、187,259,448,583,754,()
A、847
B、862
C、915
D、944
【答案】:答案:B
解析:各項數字和均為16。故選B。4、某商店花10000元進了一批商品,按期望獲得相當于進價25%的利潤來定價。結果只銷售了商品總量的30%。為盡快完成資金周轉,商店決定打折銷售,這樣賣完全部商品后,虧本1000元。問商店是按定價打幾折銷售的?()
A、九折
B、七五折
C、六折
D、四八折
【答案】:答案:C
解析:由只銷售了總量的30%知,打折前銷售額為10000×(1+25%)×30%=3750元;設此商品打x折出售,剩余商品打折后,銷售額為10000×(1+25%)×(1-30%)x=8750x。根據虧本1000元,可得3750+8750x-10000=﹣1000,解得x=0.6,即打六折。故選C。5、為幫助果農解決銷路,某企業年底買了一批水果,平均發給每部門若干筐之后還多了12筐,如果再買進8筐則每個部門可分得10筐,則這批水果共有()筐。
A、192
B、198
C、200
D、212
【答案】:答案:A
解析:由于再買進8筐則每個部門可分得10筐,則總筐數加8應能被10整除,排除B、C。將A項代入題目,可得部門數為(192+8)÷10=20(個),則原來平均發給每部門(192-12)÷20=9(筐),水果筐數為整數解,符合題意。故選A。6、甲乙兩人需托運行李。托運收費標準為10kg以下6元/kg,超出10kg部分每公斤收費標準略低一些。已知甲乙兩人托運費分別為109.5元、78元,甲的行李比乙重了50%。那么,超出10kg部分每公斤收費標準比10kg以內的低了()元。
A.1.5
B.2.5
C.3.5
D.4.5
【答案】:答案:A
解析:解析一:分段計費問題,設乙的行李超出的重量為x,即乙的行李總重量為10+x,則甲的行李重量為1.5×(10+x)。所以計算超出部分的重量為1.5×(10+x)-10=5+1.5x,超出金額為49.5元,所以按照比例,乙的行李超出了重量x,超出金額為18元,得到,解得x=4,所以超出部分單價為18÷4=4.5元。所以超出10公斤部分每公斤收費標準比10公斤以內的低了6-4.5=1.5元。解析二:盈虧思路,由于甲的行李重量比乙的多50%,所以分段看,乙超出部分為18元,所以對應的多50%的重量,應該是27元。則從甲超出的49.5元中扣除27元,還剩22.5元,這個錢數應該對應著10公斤的50%,即5公斤22.5元。所以每公斤超出部分為4.5元,超出10公斤部分每公斤收費標準比10公斤以內的低了6-4.5=1.5,得解。故正確答案為A。速解:靠常識解決,題目中說“超出10公斤部分每公斤收費標準略低一些。”所以選稍微低一點的7、1,6,5,7,2,8,6,9,()
A、1
B、2
C、3
D、4
【答案】:答案:C
解析:本題為隔項遞推數列,存在關系:第三項=第二項-第一項,第五項=第四項-第三項,……因此未知項為9-6=3。故選C。8、甲、乙和丙三種不同濃度、不同規格的酒精溶液,每瓶重量分別為3公斤、7公斤和9公斤,如果將甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分別混合,得到的酒精濃度分別為50%,50%和60%。如果將三種酒精合各一瓶混合,得到的酒精中要加入多少公斤純凈水后,其濃度正好是50%?()
A、1
B、1.3
C、1.6
D、1.9
【答案】:答案:C
解析:甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分別混合,相當于兩瓶甲、兩瓶乙、兩瓶丙混合,前兩種濃度都是50%,所以只需要加入適量水使得乙丙混合濃度由60%變為50%即可。設加水x,可將濃度為60%的酒精溶液溶度變為50%,即,解得x=3.2(公斤)。此時甲乙,甲丙和乙丙溶液各一瓶混合后濃度必然為50%。若甲、乙和丙各一瓶混合時濃度仍然為50%,則需加水為(公斤)。故選C。9、2,1,2/3,1/2,()
A、3/4
B、1/4
C、2/5
D、5/6
【答案】:答案:C
解析:數列可化為4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后項為4/10=2/5。故選C。10、某班一次數學測試,全班平均91分,其中男生平均88分,女生平均93分,則女生人數是男生人數的多少倍?()
A、0.5
B、1
C、1.5
D、2
【答案】:答案:C
解析:設男生、女生人數分別為x、y,可得88x+93y=91(x+y),解得,即女生是男生的1.5倍。故選C。11、0,6,24,60,()
A、70
B、80
C、100
D、120
【答案】:答案:D
解析:0=0×1×2,6=1×2×3,24=2×3×4,60=3×4×5,()=4×5×6=120。另解,0=13-1,6=23-2,24=33-3,60=43-4,()=53-5=120。故選D。12、2,14,84,420,1680,()
A、2400
B、3360
C、4210
D、5040
【答案】:答案:D
解析:兩兩做商得到7,6,5,4,按此規律下一項為3,所以所求項為1680×3=5040。故選D。13、從A地到B地為上坡路。自行車選手從A地出發按A-B-A-B的路線行進,全程平均速度為從B地出發,按B-A-B-A的路線行進的全程平均速度的4/5,如自行車選手在上坡路與下坡路上分別以固定速度勻速騎行,問他上坡的速度是下坡速度的()。
A、1/2
B、1/3
C、2/3
D、3/5
【答案】:答案:A
解析:S=VT,當S一定的時候,VT成反比,兩次行程的平均速度之比是4:5,故兩次行程所用時間之比T1:T2=5:4。設一個下坡的時間是1,一個上坡的時間是n,則上坡速度是下坡速度的1/n。A-B-A-B的過程經歷了2個上坡和1個下坡,則T1=2n+1;B-A-B-A的過程經歷了2個下坡和1個上坡,則T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故選A。14、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,奇數項是2,偶數項構成公差為1的等差數列,即所填數字為6+(-1)=5。故選B。15、某種茶葉原價30元一包,為了促銷,降低了價格,銷量增加了二倍,收入增加了五分之三,則一包茶葉降價()元。
A、12
B、14
C、13
D、11
【答案】:答案:B
解析:設原來茶葉的銷量為1,那么現在銷量為3。原來收入為30元,現在收入為30×(1+3/5)=48元,每包茶葉為48÷3=16元,降價30-16=14元。故選B。16、4,10,34,130,()
A、184
B、258
C、514
D、1026
【答案】:答案:C
解析:解法一:二級等差數列變式。解法二:從第三項開始,第三項等于第二項的5倍減去第一項的4倍,即34=5×10-4×4,130=5×34-4×10,(514)=5×130-4×34。故選C。17、7.1,8.6,14.2,16.12,28.4,()
A、32.24
B、30.4
C、32.4
D、30.24
【答案】:答案:A
解析:奇數項依次為:7.1、14.2、28.4,是公比為2的等比數列;偶數項依次為:8.6、16.12,是公比為2的等比數列,即所填數字為16.12×2=32.24。故選A。18、有一1500米的環形跑道,甲,乙二人同時同地出發,若同方向跑,50分鐘后甲比乙多跑一圈,若以反方向跑,2分鐘后二人相遇,則乙的速度為()。
A、330米/分鐘
B、360米/分鐘
C、375米/分鐘
D、390米/分鐘
【答案】:答案:B
解析:同向追及50分鐘后甲比乙多跑一圈得:(V甲-V乙)×50=1500;由反向跑2分鐘后相遇有:(V甲+V乙)×2=1500,解得V乙=360(米/分鐘)。故選B。19、要將濃度分別為20%和5%的A、B兩種食鹽水混合配成濃度為15%的食鹽水900克,問5%的食鹽水需要多少克?()
A、250
B、285
C、300
D、325
【答案】:答案:C
解析:設需要5%的食鹽水x克,則需要20%的食鹽水(900-x)克;根據混合后濃度為15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故選C。20、某商店以5元/斤的價格購入一批蔬菜,上午以8元/斤的價格賣出總進貨量的60%,中午以上午售出價的8折賣出總進貨量的20%,下午以中午售出價的一半賣出剩余貨量的一半,最后獲利210元。則該商店一共購入多少斤蔬菜?()
A、140
B、150
C、160
D、180
【答案】:答案:B
解析:賦值購進的量為10斤,上午以8元/斤的價格賣出6斤,中午以6.4元/斤的價格賣出2斤,下午以3.2元/斤的價格賣出1斤,總收入=8×6+6.4×2+3.2×1=64元,總利潤=64-5×10=14元,實際購入(210/14)×10=150斤。故選B。21、為幫助果農解決銷路,某企業年底買了一批水果,平均發給每部門若干筐之后還多了12筐,如果再買進8筐則每個部門可分得10筐,則這批水果共有()筐。
A、192
B、198
C、200
D、212
【答案】:答案:A
解析:由于再買進8筐則每個部門可分得10筐,則總筐數加8應能被10整除,排除B、C。將A項代入題目,可得部門數為(192+8)÷10=20(個),則原來平均發給每部門(192-12)÷20=9(筐),水果筐數為整數解,符合題意。故選A。22、1,11,21,31,()
A、39
B、49
C、41
D、51
【答案】:答案:C
解析:題中數列為公差為10的等差數列,故()=31+10=41。故選C。23、甲、乙兩人在一條400米的環形跑道上從相距200米的位置出發,同向勻速跑步。當甲第三次追上乙的時候,乙跑了2000米。問甲的速度是乙的多少倍?()
A、1.2
B、1.5
C、1.6
D、2.0
【答案】:答案:B
解析:環形同點同向出發每追上一次,甲比乙多跑一圈。第一次由于是不同起點,甲比乙多跑原來的差距200米;之后兩次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,時間相同,則速度比與路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故選B。24、一條馬路的兩邊各立著10盞電燈,現在為了節省用電,決定每邊關掉3盞,但為了安全,道路起點和終點兩邊的燈必須是亮的,而且任意一邊不能連續關掉兩盞。問總共有多少種方案?()
A、120
B、320
C、400
D、420
【答案】:答案:C
解析:每一邊7盞亮著的燈形成6個空位,把3盞熄滅的燈插進去,則共有=400種方案。故選C。25、2,1,2/3,1/2,()
A、3/4
B、1/4
C、2/5
D、5/6
【答案】:答案:C
解析:數列可化為4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后項為4/10=2/5。故選C。26、2,2,6,14,34,()
A、82
B、50
C、48
D、62
【答案】:答案:A
解析:2+2×2=6;2+6×2=14;6+14×2=34;14+34×2=82。故選A。27、某出版社新招了10名英文、法文和日文方向的外文編輯,其中既會英文又會日文的小李是唯一掌握一種以上外語的人。在這10人中,會法文的比會英文的多4人,是會日文人數的兩倍。問只會英文的有幾人?()
A、2
B、0
C、3
D、1
【答案】:答案:D
解析:設會日文的有x人,則會法文的有2x人,會英文的有(2x-4)人,由于小李既會英文也會日文,被統計兩次,故10人統計了11人次。根據人次總數,得方程11=x+2x+2x-4,解得x=3,則會英文的人為2x-4=2(人),因小李既會英文又會日文,所以只會英文的只有2-1=1(人),故選D。28、2,3,6,18,108,()
A、1944
B、1620
C、1296
D、1728
【答案】:答案:A
解析:2×3=6,3×6=18,6×18=108,……前兩項相乘等于下一項,則所求項為18×108,尾數為4。故選A。29、1,2,3,6,12,24,()
A、48
B、45
C、36
D、32
【答案】:答案:A
解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N項=第N-1項+…+第一項,即所填數字為1+2+3+6+12+24=48。故選A。30、兩個人帶著寵物狗玩游戲,兩人相距200米,并以相同速度1米/秒相向而行,與此同時,寵物狗以3米/秒的速度,在兩人之間折返跑,當兩人相距60米時,那么寵物狗總共跑的距離為?()
A、270米
B、240米
C、210米
D、300米
【答案】:答案:C
解析:根據狗與兩人同時出發可知,狗與兩人的運動時間相同。兩人從相距200米,相向運動至60米,共行駛200-60=140(米),設兩人運動時間為t,有140=(1+1)×t,解得t=70秒。則狗總共跑的距離為3×70=210(米)。故選C。31、1,2,6,30,210,()
A、1890
B、2310
C、2520
D、2730
【答案】:答案:B
解析:2÷1=2,6÷2=3,30÷6=5,210÷30=7,相鄰兩項后一項除以前一項的商構成連續的質數列,即所填數字為210×11=2310。故選B。32、118,199,226,(),238
A、228
B、230
C、232
D、235
【答案】:答案:D
解析:相鄰兩項后一項減前一項,199-118=81,226-199=27,235-226=9,238-235=3,是公比為的等比數列,即所填數字為238-3=226+9=235。故選D。33、某樓盤的地下停車位,第一次開盤時平均價格為15萬元/個;第二次開盤時,車位的銷售量增加了一倍、銷售額增加了60%。那么,第二次開盤的車位平均價格為()。
A、10萬元/個
B、11萬元/個
C、12萬元/個
D、13萬元/個
【答案】:答案:C
解析:銷售額=平均價格×銷售量,已知第一次開盤平均價格為15萬元/個,賦銷售量為1,則銷售額為15萬。第二次開盤時,銷售量增加了一倍,即為2,銷售額增加了60%,得銷售額為15×(1+60%)=24(萬元),故第二次開盤平均價格為24÷2=12(萬元/個)。故選C。34、1,1,2,6,24,()
A、11
B、50
C、80
D、120
【答案】:答案:D
解析:依次將相鄰兩個數中后一個數除以前一個數得1,2,3,4,為連續自然數列,即所填數字為24×5=120。故選D。35、2,6,18,54,()
A、186
B、162
C、194
D、196
【答案】:答案:B
解析:該數列是以3為公比的等比數列,故空缺項為:54×3=162。故選B。36、某商店以5元/斤的價格購入一批蔬菜,上午以8元/斤的價格賣出總進貨量的60%,中午以上午售出價的8折賣出總進貨量的20%,下午以中午售出價的一半賣出剩余貨量的一半,最后獲利210元。則該商店一共購入多少斤蔬菜?()
A、140
B、150
C、160
D、180
【答案】:答案:B
解析:賦值購進的量為10斤,上午以8元/斤的價格賣出6斤,中午以6.4元/斤的價格賣出2斤,下午以3.2元/斤的價格賣出1斤,總收入=8×6+6.4×2+3.2×1=64元,總利潤=64-5×10=14元,實際購入(210/14)×10=150斤。故選B。37、水面上有三艘同向行駛的輪船,其中甲船的時速為63公里,乙、丙兩船的時速均為60公里,但由于故障,丙船每連續行駛30分鐘后必須停船2分鐘。早上10點,三船到達同一位置,問1小時后,甲、丙兩船最多相距多少公里?()
A、5
B、7
C、9
D、11
【答案】:答案:B
解析:1小時內,甲船行駛了63公里,丙船最多停車4分鐘,即行駛56分鐘,行駛路程為56公里。故最多相距7公里。故選B。38、為了國防需要,A基地要運載1480噸的戰備物資到1100千米外的B基地。現在A基地只有一架“運9”大型運輸機和一列“貨運列車”,“運9”速度550千米每小時,載重能力為20噸,“貨運列車”速度100千米每小時,運輸能力為600噸,那么這批戰備物資到達B基地的最短時間為:
A.53小時
B.54小時
C.55小時
D.56小時
【答案】:答案:B
解析:由題意可知,運輸機運輸一次往返需要2×(1100÷550)=4小時,單位時間運輸5噸;列車運輸一次往返需要2×(1100÷100)=22小時,單位時間運輸20+噸。要求運輸時間最短,那么必然要讓單位時間運輸量大的列車盡可能多地運輸。貨運列車運輸能力為600噸,運輸總量為1480噸,因此可推知貨運列車共運輸兩次,即噸。還剩1480-1200=280噸,需要運輸機運輸280÷20=14次。且第14次不用計算返回所用的時間,則最短時間為小時。故正確答案為B。39、2,3,10,15,26,35,()
A、40
B、45
C、50
D、55
【答案】:答案:C
解析:2=1平方+1,3=2平方-1,10=3平方+1,15=4平方-1,26=5平方+1,35=6平方-1,問號=7平方+1,問號=50。故選C。40、1806,1510,1214,918,()
A、724
B、722
C、624
D、622
【答案】:答案:D
解析:百位和千位看做一個數列,是18,15,12,9,構成公差為-3的等差數列,所以下一項應為6;十位和個位看做一個數列,是06,10,14,18,構成公差為4的等差數列,所以下一項應為22。故未知項應為622。故選D。41、130,68,30,(),2
A、11
B、12
C、10
D、9
【答案】:答案:C
解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故選C。42、設袋中裝有標著數字為1,2,…,8等8個簽,并規定標有數字1,4,7的為中獎號。甲、乙、丙、丁
4人依次從袋中隨機抽取一個簽、已知丙中獎了、則乙不中獎的概率為多少?()
A、5/8
B、3/7
C、3/8
D、5/7
【答案】:答案:D
解析:已知丙中獎,則剩余7個簽,還有2個是中獎號,可得乙不中獎概率為。故選D。43、4,8,28,216,()
A、6020
B、2160
C、4200
D、4124
【答案】:答案:A
解析:4×(8-1)=28,8×(28-1)=216,即所填數字為28×(216-1)=6020。故選A。44、-1,3,-3,-3,-9,()
A、-9
B、-4
C、-14
D、-45
【答案】:答案:D
解析:題干倍數關系明顯,考慮作商。后項除以前項得到新數列:-3、-1、1、3,新數列為公差是2的等差數列,則新數列的下一項應為5,所求項為:-9×5=-45。故選D。45、-56,25,-2,7,4,()
A、3
B、-12
C、-24
D、5
【答案】:答案:D
解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)項-第N項=-3[第N項-第(N+1)項](N≥2),即所填數字為4-=5。故選D。46、5,17,21,25,()
A、30
B、31
C、32
D、34
【答案】:答案:B
解析:都為奇數。故選B。47、95,88,71,61,50,()
A、40
B、39
C、38
D、37
【答案】:答案:A
解析:95-9-5=81,88-8-8=72,71-7-1=63,61-6-1=54,50-5-0=45,40-4-0=36,其中81,72,63,54,45,36等差。故選A。48、0,4,18,48,()
A、96
B、100
C、125
D、136
【答案】:答案:B
解析:思路一:0=0×12;4=1×22;18=2×32;48=3×42;100=4×52。思路二:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100;項數12345;乘以0,2,6,12,20=>作差2,4,6,8。故選B。49、1,2,4,3,5,6,9,18,()
A、14
B、24
C、27
D、36
【答案】:答案:A
解析:位于奇數項的1、4、5、9構成和數列,位于偶數項的2、3、6、18構成積數列,即所填的奇數項應為5+9=14。故選A。50、4,5,7,9,13,15,()
A、17
B、19
C、18
D、20
【答案】:答案:B
解析:各項減2后為質數列,故下一項為17+2=19。故選B。51、甲、乙兩人在一條400米的環形跑道上從相距200米的位置出發,同向勻速跑步。當甲第三次追上乙的時候,乙跑了2000米。問甲的速度是乙的多少倍?()
A、1.2
B、1.5
C、1.6
D、2.0
【答案】:答案:B
解析:環形同點同向出發每追上一次,甲比乙多跑一圈。第一次由于是不同起點,甲比乙多跑原來的差距200米;之后兩次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,時間相同,則速度比與路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故選B。52、假設地球上新生成的資源的增長速度是一定的,照此推算,地球上的資源可供110億人生活90年,或者可供90億人生活210年。為了使人類能夠不斷繁衍,那么地球最多能養活多少億人?()
A、70
B、75
C、80
D、100
【答案】:答案:B
解析:設地球的原始資源可供x億人生存一年,每年增長的資源可供y億人生存一年,即x+90y=90×110,x+210y=210×90,兩式聯立得y=75,為了使人類能夠不斷繁衍,那么地球最多能養活75億人。故選B。53、2,7,14,21,294,()
A、28
B、35
C、273
D、315
【答案】:答案:D
解析:21=7+14,14=2×7,294=14×21,為兩項相加、相乘交替得到后-項,即所填數字為21+294=315。故選D。54、5,4,10,8,15,16,(),()
A、20,18
B、18,32
C、20,32
D、18,36
【答案】:答案:C
解析:從題干中給出的數字不難看出,奇數項5,10,15,(20)構成公差為5的等差數列,偶數項4,8,16,(32)構成公比為2的等比數列。故選C。55、某小區有40%的住戶訂閱日報,有15%的住戶同時訂閱日報和時報,至少有75%的住戶至少訂閱兩種報紙中的一種,問訂閱時報的比例至少為多少?()
A、35%
B、50%
C、55%
D、60%
【答案】:答案:B
解析:設訂閱時報的住戶為x,至少訂閱一種報紙的人數為40%+x-15%。由至少75%的住戶至少訂閱兩種報紙中的一種得,40%+x-15%≥75%,解得x≥50%。故選B。56、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,為奇數項是2偶數項為公差為1的等差數列,即所填數字為6+(-1)=5。故選B。57、3,-6,12,-24,()
A、42
B、44
C、46
D、48
【答案】:答案:D
解析:公比為-2的等比數列。故選D。58、140支社區足球隊參加全市社區足球淘汰賽,每一輪都要在未失敗過的球隊中抽簽決定比賽對手,如上一輪未失敗過的球隊是奇數,則有一隊不用比賽直接進人下—輪。問奪冠的球隊至少要參加幾場比賽? ()
A、3
B、4
C、5
D、6
【答案】:答案:B
解析:根據題意,如果是奇數隊的話,有一隊輪空,自動進入下一場。題目問冠軍至少需要參加幾場比賽,為了讓冠軍參加的場次盡可能的少,每次輪空自動進入下一場的都是冠軍。整個比賽過程為:140-70-35-18-9-5-3-2-1,需要進行8輪,有4輪是輪空的。所以冠軍至少需要進行4場比賽。故選B。59、41,59,32,68,72,()
A、28
B、36
C、40
D、48
【答案】:答案:A
解析:兩兩分組得到(41,59),(32,68),(72,()),發現組內做和均為100。故選A。60、修一條公路,甲工程隊單獨做需要40天,乙工程隊單獨做需要24天。現在兩隊合作,同時從兩端開工,在距中點750米處兩隊相遇。那么這條公路長多少米?()
A、3750
B、3000
C、4000
D、6000
【答案】:答案:D
解析:甲乙效率之比=24:40=3:5,完成的任務量之比3:5、相差2份對應對應750×2=1500米,總任務量8份對應1500×4=6000米。故選D。61、6,21,43,72,()
A、84
B、96
C、108
D、112
【答案】:答案:C
解析:依次將相鄰兩個數中后一個數減去前一個數得15,22,29,構成公差為7的等差數列,即所填數字為72+29+7=108。故選C。62、0,1,3,10,()
A、101
B、102
C、103
D、104
【答案】:答案:B
解析:思路一:0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102。思路二:0(第一項)2+1=1(第二項)12+2=332+1=10102+2=102,其中所加的數呈1,2,1,2規律。思路三:各項除以3,取余數=>0,1,0,1,0,奇數項都能被3整除,偶數項除3余1。故選B。63、5,12,24,36,52,()
A、58
B、62
C、68
D、72
【答案】:答案:C
解析:5=2+3,12=5+7,24=11+13,36=17+19,52=23+29,全是從小到大的質數和,所以下一個是31+37=68。故選C。64、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,奇數項是2,偶數項構成公差為1的等差數列,即所填數字為6+(-1)=5。故選B。65、3,4,10,33,136,()
A、685
B、424
C、314
D、149
【答案】:答案:A
解析:4=(3+1)×1,10=(4+1)×2,33=(10+1)×3,136=(33+1)×4,an=(an-1+1)×(n-1)(n≥2),即所填數字應為(136+1)×5=685。故選A。66、1,7,8,57,()
A、123
B、122
C、121
D、120
【答案】:答案:C
解析:12+7=8,72+8=57,82+57=121。故選C。67、一旅行團共有50位游客到某地旅游,去A景點的游客有35位,去B景點的游客有32位,去C景點的游客有27位,去A、B景點的游客有20位,去B、C景點的游客有15位,三個景點都去的游客有8位,有2位游客去完一個景點后先行離團,還有1位游客三個景點都沒去。那么,50位游客中有多少位恰好去了兩個景點?()
A、29
B、31
C、35
D、37
【答案】:答案:A
解析:設去兩個景點的人數為y,根據三集合非標準型公式可得:35+32+27-y-2×8=50-1,解得y=29。故選A。68、一艘輪船從甲地到乙地每小時航行30千米,然后按原路返回,若想往返的平均速度為每小時40千米,則返回時每小時航行()千米。
A、80
B、75
C、60
D、96
【答案】:答案:C
解析:設甲乙兩地的距離為1,則輪船從甲地到乙地所用的時間為1/30,如果往返的平均速度為40千米,則往返一次所用的時間為2/40,那么從乙地返回甲地所用時間為2/40-1/30=1/60,所以返回時的速度為每小時1/(1/60)=60千米。故選C。69、118,199,226,(),238
A、228
B、230
C、232
D、235
【答案】:答案:D
解析:相鄰兩項后一項減前一項,199-118=81,226-199=27,235-226=9,238-235=3,是公比為的等比數列,即所填數字為238-3=226+9=235。故選D。70、4,5,7,9,13,15,()
A、17
B、19
C、18
D、20
【答案】:答案:B
解析:各項減2后為質數列,故下一項為17+2=19。故選B。71、1,1,3,7,17,41,()
A、89
B、99
C、109
D、119
【答案】:答案:B
解析:第三項=第二項×2+第一項,99=41×2+17。故選B。72、某高速公路收費站對過往車輛的收費標準是:大型車30元/輛、中型車15元/輛、小型車10元/輛。某天,通過收費站的大型車與中型車的數量比是5∶6,中型車與小型車的數量比是4∶11,小型車的通行費總數比大型車的多270元,這天的收費總額是()。
A、7280元
B、7290元
C、7300元
D、7350元
【答案】:答案:B
解析:大、中、小型車的數量比為10∶12∶33。以10輛大型車、12輛中型車、33輛小型車為一組。每組小型車收費比大型車多33×10-10×30=30元。實際多270元,說明共通過了270÷30=9組。每組收費10×30+12×15+33×10=810元,收費總額為9×810=7290元。故選B。73、要將濃度分別為20%和5%的A、B兩種食鹽水混合配成濃度為15%的食鹽水900克,問5%的食鹽水需要多少克?()
A、250
B、285
C、300
D、325
【答案】:答案:C
解析:設需要5%的食鹽水x克,則需要20%的食鹽水(900-x)克;根據混合后濃度為15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故選C。74、2012年3月份的最后一天是星期六,則2013年3月份的最后一天是()。
A、星期天
B、星期四
C、星期五
D、星期六
【答案】:答案:A
解析:從2012年3月31號到2013年3月31號,一共是365天,365÷7=52周…1天,所以星期六加一天即為星期天。故選A。75、1,6,36,216,()
A、1296
B、1297
C、1299
D、1230
【答案】:答案:A
解析:數列是公比為6的等比數列,則所求項為216×6=1296(也可用尾數法,尾數為6)。故選A。76、-3,-2,5,24,61,()
A、122
B、156
C、240
D、348
【答案】:答案:A
解析:相鄰兩項逐差:因此,未知項=61+61=122。故選A。77、調研人員在一次市場調查活動中收回了435份調查問卷,其中80%的調查問卷上填寫了被調查者的手機號碼。那么調研人員至少需要從這些調查表中隨機抽出多少份,才能保證一定能找到兩個手機號碼后兩位相同的被調查者?()
A、101
B、175
C、188
D、200
【答案】:答案:C
解析:在435份調查問卷中有435×20%=87份沒有寫手機號;且手機號碼后兩位可能出現的情況一共10×10=100種,因此要保證一定能找到兩個手機號碼后兩位相同的被調查者,至少需要抽取87+100+1=188份。故選C。78、某服裝店有一批襯衣共76件,分別賣給了33位顧客,每位顧客最多買了3件。襯衣定價為100元,買1件按原價,買2件總價打九折,買3件總價打八折。最后賣完這批襯衣共收入6460元,則買了3件的顧客有()位。
A.4
B.8
C.14
D.15
【答案】:答案:C
解析:由題意可設買了1件、2件、3件衣服的人數分別為x、y、z人,則可得x+y+z=33,x+2y+3z=76,,聯立求解可得x=4,y=15,z=14。故正確答案為C。79、1,2,3,6,12,24,()
A、48
B、45
C、36
D、32
【答案】:答案:A
解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N項=第N-1項+…+第一項,即所填數字為1+2+3+6+12+24=48。故選A。80、某木場有甲,乙,丙三位木匠師傅生產桌椅,甲每天能生產12張書桌或13把椅子;乙每天能生產9張書桌或12把椅子,丙每天能生產9張書桌或15把椅子,現在書桌和椅子要配套生產(每套一張書桌一把椅子),則7天內這三位師傅最多可以生產桌椅()套。
A、116
B、129
C、132
D、142
【答案】:答案:B
解析:將甲、乙、丙三位木匠師傅生產桌椅的效率列表如下,分析可知,甲生產書桌的相對效率最高,丙生產椅子的相對效率最高,則安排甲7天全部生產書桌,丙7天全部生產椅子,乙協助甲丙完成。甲7天可生產桌子12×7=84(張),丙7天可生產椅子15×7=105(把)。設乙生產書桌x天,則生產椅子(7-x)天,當生產的書桌數與椅子數相同時,獲得套數最多,可列方程84+9x=105+12×(7-x),解得x=5,則乙可生產書桌9×5=45(張)。故7天內這三位師傅最多可以生產桌椅84+45=129(套)。故選B。81、3,-6,12,-24,()
A、42
B、44
C、46
D、48
【答案】:答案:D
解析:公比為-2的等比數列。故選D。82、6,9,10,14,17,21,27,()
A、28
B、29
C、30
D、31
【答案】:答案:C
解析:依次將奇數項做差得10-6=4、17-10=7、27-17=10,4、7、10構成公差為3的等差數列;又依次將偶數項做差得14-9=5、21-14=7,若加入9則5、7、9可構成公差為2的等差數列,即所填數字為21+9=30。故選C。83、12,23,34,45,56,()
A、66
B、67
C、68
D、69
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數,構成公差為11的等差數列,即所填的數字為56+11=67。故選B。84、90,85,81,78,()
A、75
B、74
C、76
D、73
【答案】:答案:C
解析:后項減去前項,可得-5、-4、-3、(-2),這是一個公差為1的等差數列,所以下一項為78-2=76。故選C。85、接受采訪的100個大學生中,88人有手機,76人有電腦,其中有手機沒電腦的共15人,則這100個學生中有電腦但沒手機的共有多少人?()
A、25
B、15
C、5
D、3
【答案】:答案:D
解析:根據有手機沒電腦共15人,可得既有手機又有電腦(①部分)的人數為88-15=73人,則有電腦但沒手機(②部分)的人數為76-73=3人。故選D。86、7,9,-1,5,()
A、3
B、-3
C、2
D、-2
【答案】:答案:B
解析:第三項=(第一項-第二項)/2=>-1=(7-9)/25=(9-(-1))/2-3=(-1-5)/2。故選B。87、-3,-2,5,24,61,()
A、122
B、156
C、240
D、348
【答案】:答案:A
解析:相鄰兩項逐差:因此,未知項=61+61=122。故選A。88、2,3,5,7,()
A、8
B、9
C、11
D、12
【答案】:答案:C
解析:2,3,5,7,為連續的質數數列,7后面質數為11,則所求項為11。故選C。89、某制衣廠接受一批服裝訂貨任務,按計劃天數進行生產,如果每天平均生產20套服裝,就比訂貨任務少生產100套;如果每天生產23套服裝,就可超過訂貨任務20套。那么,這批服裝的訂貨任務是多少套?()
A、760
B、1120
C、900
D、850
【答案】:答案:C
解析:由題意每天生產多出3套,總共就會多生產出120,那么計劃的天數為40天,所以這批服裝為20×40+100=900(套)。故選C。90、5,7,9,(),15,19
A、11
B、12
C、13
D、14
【答案】:答案:C
解析:5=2+3,7=2+5,9=2+7,15=2+13,19=2+17,每一項是一個連續質數數列與2的和,即所填數字為11+2=13。故選C。91、某農場有36臺收割機,要收割完所有的麥子需要14天時間。現收割了7天后增加4臺收割機,并通過技術改造使每臺機器的效率提升,問收割完所有的麥子還需要幾天。
A.3
B.4
C.5
D.6
【答案】:答案:D
解析:方法一:賦值法,賦值每臺收割機每天的工作效率為1,則工作總量為36×14,剩下的36×7由36+4=40臺收割機完成,技術改造后每臺收割機效率為,故剩下需要的時間為。方法二:比例法。由題意,原有收割機36臺,增加4臺后變為40臺,提高效率5%后相當于原先40×(1+5%)=42臺收割機的工作效率。效率比為6∶7,故所有時間比為7∶6,還需6天即可完成。故正確答案為D。92、2,3,10,15,26,35,()
A、40
B、45
C、50
D、55
【答案】:答案:C
解析:2=1平方+1,3=2平方-1,10=3平方+1,15=4平方-1,26=5平方+1,35=6平方-1,問號=7平方+1,問號=50。故選C。93、在某企業,40%的員工有至少3年的工齡,16個員工有至少8年的工齡。如果90%的員工的工齡不足8年,則工齡至少3年但不足8年的員工有()人。
A、48
B、64
C、80
D、144
【答案】:答案:A
解析:由于不足8年工齡的員工占90%,則至少8年工齡的員工占1-90%=10%,可得員工總數為16÷10%=160(人),故工齡至少3年但不足8年的員工有160×40%-16=48(人)。故選A。94、某人租下一店面準備賣服裝,房租每月1萬元,重新裝修花費10萬元。從租下店面到開始營業花費3個月時間。開始營業后第一個月,扣除所有費用后的純利潤為3萬元。如每月純利潤都比上月增加2000元而成本不變,問該店在租下店面后第幾個月內收回投資?()
A、7
B、8
C、9
D、10
【答案】:答案:A
解析:由題意可得租下店面前3個月成本為1×3+10=13(萬元),租下店面第4個月開始營業,營業后各月獲得的純利潤構成首項為3萬元、公差為0.2萬元的等差數列:3萬元、3.2萬元、3.4萬元、3.6萬元。由3+3.2+3.4+3.6=13.2>13,即第7個月收回投資。故選A。95、調研人員在一次市場調查活動中收回了435份調查問卷,其中80%的調查問卷上填寫了被調查者的手機號碼。那么調研人員至少需要從這些調查表中隨機抽出多少份,才能保證一定能找到兩個手機號碼后兩位相同的被調查者?()
A、101
B、175
C、188
D、200
【答案】:答案:C
解析:在435份調查問卷中有435×20%=87份沒有寫手機號;且手機號碼后兩位可能出現的情況一共10×10=100種,因此要保證一定能找到兩個手機號碼后兩位相同的被調查者,至少需要抽取87+100+1=188份。故選C。96、-1,6,25,62,()
A、123
B、87
C、150
D、109
【答案】:答案:A
解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故選A。97、2,3,8,27,32,(),128
A、64
B、243
C、275
D、48
【答案】:答案:B
解析:間隔組合數列。奇數項是公比為4的等比數列,偶數項是公比為9的等比數列,所求項為27×9=(243)。故選B。98、某雜志為每篇投稿文章安排兩位審稿人,若都不同意錄用則棄用;若都同意則錄用;若兩人意見不同,則安排第三位審稿人,并根據其意見錄用或棄用,如每位審稿人錄用某篇文章的概率都是60%,則該文章最終被錄用的概率是()。
A、36%
B、50.4%
C、60%
D、64.8%
【答案】:答案:D
解析:根據題意,該文章最終被錄用可分為以下兩種情況:(1)前兩位審稿人都同意,概率為0.6×0.6=0.36;(2)前兩位審稿人只有一人同意且第三位審稿人同意,概率為;故該文章最終被錄用的概率為0.36+0.288=0.648=64.8%。故選D。99、145,120,101,80,65,()
A、48
B、49
C、50
D、51
【答案】:答案:A
解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇數項,每項等于首項為12,公差為-2的平方加1;偶數項,每項等于首項為11,公差為-2的平方減1,即所填數字為72-1=48。故選A。100、13,14,16,21,(),76
A、23
B、35
C、27
D、22
【答案】:答案:B
解析:相連兩項相減:1,2,5,();再減一次:1,3,9,27;()=14;21+14=35。故選B。101、25與一個三位數相乘個位是0,與這個三位數相加有且只有一次進位,像這樣的三位數總共有多少個? ()
A、48
B、126
C、174
D、180
【答案】:答案:C
解析:因為25與一個三位數相乘個位是0,所以這個三位數個位上的數是0、2、4、6、8。又因為與這個三位數相加有且只有一次進位,所以當個位是0、2、4時,十位必須是8或9,百位是1-8八個數都可以,這種情況有48(8乘2乘3等于48)個數滿足條件;當個位是6或8時,十位可以是0、1、2、3、4、5、6七個數,百位是1-9九個數,這種情況有126(9乘7乘2等于126)個數滿足條件;終上所述一共有174(48+126=174)個,即:像這樣的三位數總共有174個。故選C。102、-3,-2,1,6,()
A、8
B、11
C、13
D、15
【答案】:答案:C
解析:相鄰兩項之差依次為1,3,5,(7),應填入13。故選C。103、將17拆分成若干個自然數的和,這些自然數的乘積的最大值是多少?()
A、256
B、486
C、556
D、376
【答案】:答案:B
解析:若把一個整數拆分成若干個自然數之和,有大于4的數,則把大于4的這個數再分成一個2與另一個大于2的自然數之和,則這個2與大于2的這個數的乘積肯定比這個大于4的數更大。另外,如果拆分的數中含有1,則對乘積增大沒有貢獻,因此不能考慮。因此,要使加數之積最大,加數只能是2和3。但是,若加數中含有3個2,則不如將它換成2個3。因為2×2×2=8,而3×3=9。故拆分出的自然數中,至多含有兩個2,而其余都是3。故將17拆分為17=3+3+3+3+3+2時,其乘積最大,最大值為243×2=486。故選B。104、10,9,17,50,()
A、100
B、99
C、199
D、200
【答案】:答案:C
解析:10×1-1=9;9×2-1=17;17×3-1=50;50×4-1=199。故選C。105、某木場有甲,乙,丙三位木匠師傅生產桌椅,甲每天能生產12張書桌或13把椅子;乙每天能生產9張書桌或12把椅子,丙每天能生產9張書桌或15把椅子,現在書桌和椅子要配套生產(每套一張書桌一把椅子),則7天內這三位師傅最多可以生產桌椅()套。
A、116
B、129
C、132
D、142
【答案】:答案:B
解析:將甲、乙、丙三位木匠師傅生產桌椅的效率列表如下,分析可知,甲生產書桌的相對效率最高,丙生產椅子的相對效率最高,則安排甲7天全部生產書桌,丙7天全部生產椅子,乙協助甲丙完成。甲7天可生產桌子12×7=84(張),丙7天可生產椅子15×7=105(把)。設乙生產書桌x天,則生產椅子(7-x)天,當生產的書桌數與椅子數相同時,獲得套數最多,可列方程84+9x=105+12×(7-x),解得x=5,則乙可生產書桌9×5=45(張)。故7天內這三位師傅最多可以生產桌椅84+45=129(套)。故選B。106、一條馬路的兩邊各立著10盞電燈,現在為了節省用電,決定每邊關掉3盞,但為了安全,道路起點和終點兩邊的燈必須是亮的,而且任意一邊不能連續關掉兩盞。問總共有多少種方案?()
A、120
B、320
C、400
D、420
【答案】:答案:C
解析:每一邊7盞亮著的燈形成6個空位,把3盞熄滅的燈插進去,則共有=400種方案。故選C。107、-1,1,7,25,79,()
A、121
B、241
C、243
D、254
【答案】:答案:B
解析:相鄰兩項之差依次是2,6,18,54,(162),這是一個公比為3的等比數列,79+162=(241)。故選B。108、2,12,40,112,()
A、224
B、232
C、288
D、296
【答案】:答案:C
解析:原數列可以寫成1×2,3×4,5×8,7×16,前一個乘數數列為1,3,5,7,是等差數列,下一項是9,后一個乘數數列為2,4,8,16,是等比數列,下一項是32,所以原數列空缺項為9×32=288。故選C。109、某班有56名學生,每人都參加了a、b、c、d、e五個興趣班中的一個。已知有27人參加a興趣班,參加b興趣班的人數第二多,參加c、d興趣班的人數相同,e興趣班的參加人數最少,只有6人,問參加b興趣班的學生有多少個?()
A、7個
B、8個
C、9個
D、10個
【答案】:答案:C
解析:設b班人數為x,c、d班的人數均為y,由b班人數第二多,e班人數最少,可知各班人數關系為:27>x>y>6。該班有56名學生,56=27+x+y+y+6,即x+2y=23,其中2y是偶數,23為奇數,則x為奇數,排除B、D。代入A選項,當x=7時,y=8,則x<Y,不符合題意,排除。故選C。110、甲乙丙三人參加一項測試,三人的平均分為80,甲乙兩人的平均分為75,乙丙兩人的平均分為80,那么甲丙兩人的平均分為()。
A、70
B、75
C、80
D、85
【答案】:答案:D
解析:甲乙丙、甲乙的平均分分別為80、75,可知丙的分數大于80分;甲乙丙、乙丙的平均分分別為80、80,可知甲的分數為80分。則甲丙平均分大于80分。故選D。111、1,10,2,(),3,8,4,7,5,6
A、6
B、7
C、8
D、9
【答案】:答案:D
解析:間隔組合數列,奇數項1、2、3、4、5和偶數項10、(9)、8、7、6都為等差數列。故選D。112、1,1,2,8,64,()
A、1024
B、1280
C、512
D、128
【答案】:答案:A
解析:后一項除以前一項得1、2、4、8、(16),構成公比為2的等比數列,64×16=(1024)。故選B。113、2,3,13,175,()
A、30625
B、30651
C、30759
D、30952
【答案】:答案:B
解析:第一項乘以2,然后加第二項的平方等于第三項。2×2+3×3=13。第二項乘以2,然后加第三項的平方等于第四項。3×2+13×13=175。第三項乘以2,然后加第四項的平方等于第五項。13×2+175×175=30651。故選B。114、8,10,14,18,()
A、24
B、32
C、26
D、20
【答案】:答案:C
解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故選C。115、某班有56名學生,每人都參加了a、b、c、d、e五個興趣班中的一個。已知有27人參加a興趣班,參加b興趣班的人數第二多,參加c、d興趣班的人數相同,e興趣班的參加人數最少,只有6人,問參加b興趣班的學生有多少個?()
A、7個
B、8個
C、9個
D、10個
【答案】:答案:C
解析:設b班人數為x,c、d班的人數均為y,由b班人數第二多,e班人數最少,可知各班人數關系為:27>x>y>6。該班有56名學生,56=27+x+y+y+6,即x+2y=23,其中2y是偶數,23為奇數,則x為奇數,排除B、D。代入A選項,當x=7時,y=8,則x<Y,不符合題意,排除。故選C。116、學校舉行象棋比賽,共有甲、乙、丙、丁4支隊。規定每支隊都要和另外3支隊各比賽一場,勝得3分,敗得0分,平雙方各得1分。已知:(1)這4支隊三場比賽的總得分為4個連續的奇數;(2)乙隊總得分排在第一;(3)丁隊恰有兩場同對方打成平局,其中有一場是與丙隊打成平局的。問丙隊得幾分?()
A、1分
B、3分
C、5分
D、7分
【答案】:答案:A
解析:每支隊均比賽3場,因此最高分不超過9分,又知總得分為4個連續的奇數,因此得分有3、5、7、9和1、3、5、7兩種情況。若最高分為9分,那么排名第二的隊最多贏現場得6分,不可能得7分,不符合題意,故乙隊得7分,即2勝1平。由條件(3)知,丁隊恰有兩場同對方打成平局,積分2分,為偶數,故另一場只能為勝,共得5分。由此可知,丙隊得分為1或3分。由于丁隊一場未敗,故乙隊獲勝的兩場只能是甲隊和丙隊。目前已知丙隊戰兩場,一負一平,積1分,另一場無論是勝或平,積分均為偶數,故這一場只能為負,總積分為1分。故選A。117、把一根鋼管鋸成5段需要8分鐘,如果把同樣的鋼管鋸成20段需要多少分鐘?()
A、32分鐘
B、38分鐘
C、40分鐘
D、152分鐘
【答案】:答案:B
解析:把一根鋼管鋸成5段需要鋸4次,所以每鋸一次需要8÷4=2(分鐘)。則鋸20段需要鋸19次,所需的時間為19×2=38(分鐘)。故選B。118、商店購入一百多件A款服裝,其單件進價為整數元,總進價為1萬元,已知單件B款服裝的定價為其進價的1.6倍,其進價為A款服裝的75%,銷售每件B款服裝的利潤為A款服裝的一半,某日商店以定價銷售A款服裝的總銷售額超過2500元,問當天至少銷售了多少件A款服裝?()
A、13
B、15
C、17
D、19
【答案】:答案:C
解析:推出A款服裝有125件,進價為80元,B款服裝進價為80×0.75=60(元),B款服裝定價為60×1.6=96(元),利潤為96-60=36(元),A款服裝利潤為36×2=72(元),所以A款服裝售價為80+72=152(元)。銷售數量至少為2500÷152=16.4,取整為17件。故選C。119、20/9,4/3,7/9,4/9,1/4,()
A、3/7
B、5/12
C、5/36
D、7/36
【答案】:答案:C
解析:20/9,4/3,7/9,4/9,1/4,(5/36)=>80/36,48/36,28/36,16/36,9/36,5/36;分母36,36,36,36,36,36等差;分子80,48,28,16,9,5三級等差。故選C。120、8,6,-4,-54,()
A、-118
B、-192
C、-320
D、-304
【答案】:答案:D
解析:依次將相鄰兩個數中后一個數減去前一個數得-2,-10,-50,構成公比為5的等比數列,即所填數字為-54+(-250)=-304。故選D。121、甲、乙、丙三輛汽車分別從A地開往千里之外的B地。若乙比甲晚出發30分鐘,則乙出發后2小時追上甲;若丙比乙晚出發20分鐘,則丙出發后5小時追上乙。若甲出發10分鐘后乙出發,當乙追上甲時,丙才出發,則丙追上甲所需時間是()。
A、110分鐘
B、150分鐘
C、127分鐘
D、128分鐘
【答案】:答案:B
解析:設甲、乙、丙三輛汽車的速度分別為x、y、z。由于甲行駛30分鐘的路程,乙需要2小時才能追上,則30x=(y-x)×2×60,化簡得x∶y=4∶5。又因乙行駛20分鐘的路程,丙需要5小時才能追上,則20y=(z-y)×5×60,化簡得y∶z=15∶16。所以三輛汽車的速度x∶y∶z=12∶15∶16。賦值甲、乙、丙的速度分別為12、15、16,甲出發10分鐘后乙出發,則乙追上甲的時間為(分鐘),故丙出發時甲已經行駛10+40=50(分鐘),設丙追上甲所需時間是t分鐘,可得方程12×50=(16-12)×t,解得t=150。故選B。122、6,6,12,36,()
A、124
B、140
C、144
D、164
【答案】:答案:C
解析:兩兩相除。6/6=1,6/12=1/2,12/36=1/3,下個數為36/()=1/4。故選C。123、某年的10月里有5個星期六,4個星期日,則這年的10月1日是?()
A、星期一
B、星期二
C、星期三
D、星期四
【答案】:答案:D
解析:10月有31天,因為有5個星期六,4個星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故選D。124、-56,25,-2,7,4,()
A、3
B、-12
C、-24
D、5
【答案】:答案:D
解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)項-第N項=-3[第N項-第(N+1)項](N≥2),即所填數字為4-=5。故選D。125、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,為奇數項是2偶數項為公差為1的等差數列,即所填數字為6+(-1)=5。故選B。126、2,7,14,21,294,()
A、28
B、35
C、273
D、315
【答案】:答案:D
解析:21=7+14,14=2×7,294=14×21,為兩項相加、相乘交替得到后-項,即所填數字為21+294=315。故選D。127、8,10,14,18,()
A、24
B、32
C、26
D、20
【答案】:答案:C
解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故選C。128、1,7,8,57,()
A、123
B、122
C、121
D、120
【答案】:答案:C
解析:12+7=8,72+8=57,82+57=121。故選C。129、1,8,9,4,(),1/6
A、3
B、2
C、1
D、1/3
【答案】:答案:C
解析:1=14,8=23,9=32,4=41,1=50,1/6=6(-1)。故選C。130、2,1,2/3,1/2,()
A、3/4
B、1/4
C、2/5
D、5/6
【答案】:答案:C
解析:數列可化為4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后項為4/10=2/5。故選C。131、3,7,17,115,()
A、132
B、277
C、1951
D、1955
【答案】:答案:C
解析:3×7-4=17,7×17-4=115,即所填數字為17×115-4=1951。故選C。132、1,2,6,30,210,()
A、1890
B、2310
C、2520
D、2730
【答案】:答案:B
解析:2÷1=2,6÷2=3,30÷6=5,210÷30=7,相鄰兩項后一項除以前一項的商構成連續的質數列,即所填數字為210×11=2310。故選B。133、有蘋果若干個,若把其換成桔子,則多換5個;若把其換成菠蘿,則少掉7個,已知每個桔子4角9分錢,每個菠蘿7角錢,每個蘋果的單價是多少?()
A、5角
B、5角8分
C、5角6分
D、5角4分
【答案】:答案:C
解析:此題可理解為:把蘋果全部賣掉,得到錢若干,若用這些錢買成同樣數量的桔子,則剩下49×5=245分,若用這些錢買成同樣數量的菠蘿,則缺少70×7=490分,所以蘋果個數=(245+490)÷(70-49)=35個,蘋果總價=49×35+49×5=1960分,每個蘋果單價=1960÷35=56分=5角6分。故選C。134、有一個五位數,左邊的三位數比右邊的兩位數的4倍還多4,如果把右邊兩位數移到最前面,新的五位數比原來的2倍還多11122,則原來的五位數是()。
A、18044
B、24059
C、27267
D、30074
【答案】:答案:B
解析:多位數問題考慮用代入排除法解題。代入A選項,180=44×4+4,但44180≠18044×2+11122,不符合題意,排除;代入B選項,240=59×4+4,59240=24059×2+11122,符合題意,正確。故選B。135、學校舉行象棋比賽,共有甲、乙、丙、丁4支隊。規定每支隊都要和另外3支隊各比賽一場,勝得3分,敗得0分,平雙方各得1分。已知:(1)這4支隊三場比賽的總得分為4個連續的奇數;(2)乙隊總得分排在第一;(3)丁隊恰有兩場同對方打成平局,其中有一場是與丙隊打成平局的。問丙隊得幾分?()
A、1分
B、3分
C、5分
D、7分
【答案】:答案:A
解析:每支隊均比賽3場,因此最高分不超過9分,又知總得分為4個連續的奇數,因此得分有3、5、7、9和1、3、5、7兩種情況。若最高分為9分,那么排名第二的隊最多贏現場得6分,不可能得7分,不符合題意,故乙隊得7分,即2勝1平。由條件(3)知,丁隊恰有兩場同對方打成平局,積分2分,為偶數,故另一場只能為勝,共得5分。由此可知,丙隊得分為1或3分。由于丁隊一場未敗,故乙隊獲勝的兩場只能是甲隊和丙隊。目前已知丙隊戰兩場,一負一平,積1分,另一場無論是勝或平,積分均為偶數,故這一場只能為負,總積分為1分。故選A。136、2,3,6,15,()
A、25
B、36
C、42
D、64
【答案】:答案:C
解析:相鄰兩項間做差。做差后得到的數為1,3,9;容易觀察出這是一個等比數列,所以做差數列的下一項為27,則答案為15+27=42。故選C。137、在列車平行軌道上,甲、乙兩列火車相對開來。甲列火車長236米,每秒行38米;乙列火車長275米,已知這兩列火車錯車開過用了7秒鐘,則乙列火車按這個速度通過長為2000米的隧道需要()秒鐘。
A、65
B、70
C、75
D、80
【答案】:答案:A
解析:236+275=(38+v)×7,所以v=35,那么275+2000=35t,t=65,選A。138、2,4,12,32,88,()
A、140
B、180
C、220
D、240
【答案】:答案:D
解析:12=2×(2+4),32=2×(4+12),88=2×(32+12),第三項=2×(第一項+第二項),即所填數字為2×(88+32)=240。故選D。139、在一次知識競賽中,甲、乙兩單位平均分為85分,甲單位得分比乙單位高10分,則乙單位得分為()分。
A、88
B、85
C、80
D、75
【答案】:答案:C
解析:根據“甲、乙平均分為85分”,可得總分為85×2=170(分)。設乙得分為x,那么甲得分為x+10,由題意有x+x+10=170,解得x=80。故選C。140、-2,1,31,70,112,()
A、154
B、155
C、256
D、280
【答案】:答案:B
解析:依次將相鄰兩項做差得3、30、39、42,再次做差得27、9、3,是公比為1/3的等比數列,即所填數字為(3÷3)+42+112=155。故選B。141、一個人從家到公司,當他走到路程的一半的時候,速度下降了10%,問:他走完全程所用時間的前半段和后半段所走的路程比是()。
A、10:9
B、21:19
C、11:9
D、22:18
【答案】:答案:B
解析:設前半程速度為10,則后半程速度為9,路程總長為180,則前半程用時9,后半程用時10,總耗時19,一半為9.5。因此前半段時間走過的路程為90+9×(9.5-9)=94.5,后半段時間走過的路程為9×9.5=85.5。兩段路程之比為94.5:85.5=21:19。故選B。142、辦公室小李發現寫字臺上的臺歷很久沒有翻了,就一次翻了7張,這些臺歷的日期數加起來恰好是77,請問這一天是幾號?()
A、14
B、15
C、16
D、17
【答案】:答案:B
解析:翻過去的7天的日期是公差為1的等差數列,和是77,根據等差數列求和公式,可知中位數=77÷7=11,7天中位數是第4天即第4天為11號。第七天是11+(7-4)×1=14號,可知今天是15號。故選B。143、1,1,2,6,24,()
A、11
B、50
C、80
D、120
【答案】:答案:D
解析:依次將相鄰兩個數中后一個數除以前一個數得1,2,3,4,為連續自然數列,即所填數字為24×5=120。故選D。144、4/5,16/17,16/13,64/37,()
A、64/25
B、64/21
C、35/26
D、75/23
【答案】:答案:A
解析:已知數列可轉化為:8/10,16/17,32/26,64/37,(),分子8,16,32,64,()是公比為2的等比數列,分母10,17,26,37,()構成二級等差數列。故第五項的分子應是128,分母是50,約分后為64/25。故選A。145、2,11,32,()
A、56
B、42
C、71
D、134
【答案】:答案:C
解析:觀察題干數列可得:2=13+1,11=23+3,32=33+5,()=43+7。故括號處應為71。故選C。146、A、B、C三個試管中各盛有10克、20克、30克水,把某種濃度的鹽水10克倒入A中,充分混合后從A中取出10克倒入B中,再充分混合后從B中取出10克倒入C中,最后得到C中鹽水的濃度為0.5%。則開始倒入試管A中的鹽水濃度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含鹽量為(30+10)×0.5%=0.2克,即從B中取出的10克中含鹽0.2克,則B的濃度為0.2÷10=2%,進而求出B中含鹽量為(20+10)×2%=0.6克,即從A中取出的10克中含鹽0.6克,可得A的濃度為0.6÷10=6%,進一步得出A中含鹽量為(10+10)×6%=1.2克,故開始倒入A中的鹽水濃度為1.2÷10=12%。故選A。147、某單位組織工會活動,30名員工自愿參加做游戲。游戲規則:按1~30號編號并報數,第一次報數后,單號全部站出來,然后每次余下的人中第一個開始站出來,隔一人站出來一個人。最后站出來的人給大家唱首歌。那么給大家唱歌的員工編號是()。
A、14
B、16
C、18
D、20
【答案】:答案:B
解析:第一次報數后,單號全部站出來,剩余號碼為2、4、6、8、10······30,均為2的倍數;每次余下的人中第一個開始站出來,隔一人站出來一個人,剩余號碼為4、8、12、16、20、24、28,均為4的倍數;再從余下的號碼中第一個人開始站出來,隔一個人站出來一個人,剩余號碼為8、16、24,均為8的倍數;重復上一次的步驟
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司新春福利活動方案
- 公司活動室建立策劃方案
- 公司日常游戲活動方案
- 公司羽毛球運動活動方案
- 公司游藝類拓展活動方案
- 公司整頓活動方案
- 公司聚餐溫馨活動方案
- 公司登高節活動方案
- 公司晚會活動策劃方案
- 公司環境日活動方案
- 湖南省婁底市漣源市2023-2024學年六年級下學期6月期末英語試題
- 上海市徐匯區市級名校2025屆物理高一第二學期期末考試模擬試題含解析
- 天一大聯盟2024屆高一數學第二學期期末統考試題含解析
- (高清版)JTG 3370.1-2018 公路隧道設計規范 第一冊 土建工程
- 【語文】西安外國語大學附屬小學(雁塔區)小學五年級下冊期末試卷(含答案)
- 新編旅游職業道德 課件 譚為躍 第3-5章 旅行社從業人員道德素養、酒店從業者道德素養、景區點從業人員道德素養
- 小學數學“組題”設計分析 論文
- 附件16:地下室燈帶臨時照明系統方案
- 中央空調維護保養服務投標方案(技術標)
- 服務認證培訓課件
- 風電場反事故措施
評論
0/150
提交評論