




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
公務員考試數量關系試題第一部分單選題(200題)1、12,23,34,45,56,()
A、66
B、67
C、68
D、69
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數,構成公差為11的等差數列,即所填的數字為56+11=67。故選B。2、1,2,0,3,-1,4,()
A、-2
B、0
C、5
D、6
【答案】:答案:A
解析:奇數項1、0、-1、(-2)是公差為-1的等差數列;偶數項2、3、4是連續自然數。故選A。3、一旅行團共有50位游客到某地旅游,去A景點的游客有35位,去B景點的游客有32位,去C景點的游客有27位,去A、B景點的游客有20位,去B、C景點的游客有15位,三個景點都去的游客有8位,有2位游客去完一個景點后先行離團,還有1位游客三個景點都沒去。那么,50位游客中有多少位恰好去了兩個景點?()
A、29
B、31
C、35
D、37
【答案】:答案:A
解析:設去兩個景點的人數為y,根據三集合非標準型公式可得:35+32+27-y-2×8=50-1,解得y=29。故選A。4、(1296-18)÷36的值是()。
A、20
B、35.5
C、19
D、36
【答案】:答案:B
解析:原式可轉化為1296÷36-18÷36=36-0.5=35.5。故選B。5、學校舉行象棋比賽,共有甲、乙、丙、丁4支隊。規定每支隊都要和另外3支隊各比賽一場,勝得3分,敗得0分,平雙方各得1分。已知:(1)這4支隊三場比賽的總得分為4個連續的奇數;(2)乙隊總得分排在第一;(3)丁隊恰有兩場同對方打成平局,其中有一場是與丙隊打成平局的。問丙隊得幾分?()
A、1分
B、3分
C、5分
D、7分
【答案】:答案:A
解析:每支隊均比賽3場,因此最高分不超過9分,又知總得分為4個連續的奇數,因此得分有3、5、7、9和1、3、5、7兩種情況。若最高分為9分,那么排名第二的隊最多贏現場得6分,不可能得7分,不符合題意,故乙隊得7分,即2勝1平。由條件(3)知,丁隊恰有兩場同對方打成平局,積分2分,為偶數,故另一場只能為勝,共得5分。由此可知,丙隊得分為1或3分。由于丁隊一場未敗,故乙隊獲勝的兩場只能是甲隊和丙隊。目前已知丙隊戰兩場,一負一平,積1分,另一場無論是勝或平,積分均為偶數,故這一場只能為負,總積分為1分。故選A。6、將17拆分成若干個自然數的和,這些自然數的乘積的最大值是多少?()
A、256
B、486
C、556
D、376
【答案】:答案:B
解析:若把一個整數拆分成若干個自然數之和,有大于4的數,則把大于4的這個數再分成一個2與另一個大于2的自然數之和,則這個2與大于2的這個數的乘積肯定比這個大于4的數更大。另外,如果拆分的數中含有1,則對乘積增大沒有貢獻,因此不能考慮。因此,要使加數之積最大,加數只能是2和3。但是,若加數中含有3個2,則不如將它換成2個3。因為2×2×2=8,而3×3=9。故拆分出的自然數中,至多含有兩個2,而其余都是3。故將17拆分為17=3+3+3+3+3+2時,其乘積最大,最大值為243×2=486。故選B。7、-24,3,30,219,()
A、289
B、346
C、628
D、732
【答案】:答案:D
解析:-24=(-3)3+3,3=03+3,30=33+3,219=63+3,即所填數字為93+3=732。故選D。8、2,14,84,420,1680,()
A、2400
B、3360
C、4210
D、5040
【答案】:答案:D
解析:兩兩做商得到7,6,5,4,按此規律下一項為3,所以所求項為1680×3=5040。故選D。9、-1,3,-3,-3,-9,()
A、-9
B、-4
C、-14
D、-45
【答案】:答案:D
解析:題干倍數關系明顯,考慮作商。后項除以前項得到新數列:-3、-1、1、3,新數列為公差是2的等差數列,則新數列的下一項應為5,所求項為:-9×5=-45。故選D。10、-1,3,-3,-3,-9,()
A、-9
B、-4
C、-14
D、-45
【答案】:答案:D
解析:題干倍數關系明顯,考慮作商。后項除以前項得到新數列:-3、-1、1、3,新數列為公差是2的等差數列,則新數列的下一項應為5,所求項為:-9×5=-45。故選D。11、一條馬路的兩邊各立著10盞電燈,現在為了節省用電,決定每邊關掉3盞,但為了安全,道路起點和終點兩邊的燈必須是亮的,而且任意一邊不能連續關掉兩盞。問總共有多少種方案?()
A、120
B、320
C、400
D、420
【答案】:答案:C
解析:每一邊7盞亮著的燈形成6個空位,把3盞熄滅的燈插進去,則共有=400種方案。故選C。12、某制衣廠接受一批服裝訂貨任務,按計劃天數進行生產,如果每天平均生產20套服裝,就比訂貨任務少生產100套;如果每天生產23套服裝,就可超過訂貨任務20套。那么,這批服裝的訂貨任務是多少套?()
A、760
B、1120
C、900
D、850
【答案】:答案:C
解析:由題意每天生產多出3套,總共就會多生產出120,那么計劃的天數為40天,所以這批服裝為20×40+100=900(套)。故選C。13、調研人員在一次市場調查活動中收回了435份調查問卷,其中80%的調查問卷上填寫了被調查者的手機號碼。那么調研人員至少需要從這些調查表中隨機抽出多少份,才能保證一定能找到兩個手機號碼后兩位相同的被調查者?()
A、101
B、175
C、188
D、200
【答案】:答案:C
解析:在435份調查問卷中有435×20%=87份沒有寫手機號;且手機號碼后兩位可能出現的情況一共10×10=100種,因此要保證一定能找到兩個手機號碼后兩位相同的被調查者,至少需要抽取87+100+1=188份。故選C。14、在某城市中,有60%的家庭訂閱某種日報,有85%的家庭有電視機。假定這兩個事件是獨立的,今隨機抽出一個家庭,所抽家庭既訂閱該種日報又有電視機的概率是()。
A、0.09
B、0.25
C、0.36
D、0.51
【答案】:答案:D
解析:由于是獨立重復試驗,故既訂閱該中日報又有電視機的概率是60%×85%=51%。故選D。15、2,3,7,22,155,()
A、2901
B、3151
C、3281
D、3411
【答案】:答案:D
解析:7=3×2+1,22=7×3+1,155=22×7+1,即所填數字為22×155+1=3411。故選D。16、1,7,8,57,()
A、123
B、122
C、121
D、120
【答案】:答案:C
解析:12+7=8,72+8=57,82+57=121。故選C。17、41,59,32,68,72,()
A、28
B、36
C、40
D、48
【答案】:答案:A
解析:兩兩分組得到(41,59),(32,68),(72,()),發現組內做和均為100。故選A。18、2,6,18,54,()
A、186
B、162
C、194
D、196
【答案】:答案:B
解析:該數列是以3為公比的等比數列,故空缺項為:54×3=162。故選B。19、23,29,31,37,()
A、41
B、40
C、43
D、45
【答案】:答案:A
解析:23,29,31,37為連續的質數列23,29,31,37,即所填數字為41。故選A。20、把一根鋼管鋸成5段需要8分鐘,如果把同樣的鋼管鋸成20段需要多少分鐘?()
A、32分鐘
B、38分鐘
C、40分鐘
D、152分鐘
【答案】:答案:B
解析:把一根鋼管鋸成5段需要鋸4次,所以每鋸一次需要8÷4=2(分鐘)。則鋸20段需要鋸19次,所需的時間為19×2=38(分鐘)。故選B。21、7,21,14,21,63,(),63
A、35
B、42
C、40
D、56
【答案】:答案:B
解析:三個一組,7、21、14中第二個數是第一個數和第三個數的和,即所填數字為63-21=42。故選B。22、某城市居民用水價格為:每戶每月不超過5噸的部分按4元/噸收取;超過5噸不超過10噸的部分按6元/噸收取;超過10噸的部分按8元/噸收取。某戶居民兩個月共交水費108元,則該戶居民這兩個月用水總量最多為多少噸?()
A、17.25
B、21
C、21.33
D、24
【答案】:答案:B
解析:總費用一定,要使兩個月的用水總量最多,需盡量使用低價水。先將兩個月4元/噸的額度用完,花費4×5×2=40(元);再將6元/噸的額度用完,花費6×5×2=60(元)。由兩個月共交水費108元可知,還剩108-40-60=8(元),可購買1噸單價為8元/噸的水。該戶居民這兩個月用水總量最多為5×2+5×2+1=21(噸)。故選B。23、設袋中裝有標著數字為1,2,…,8等8個簽,并規定標有數字1,4,7的為中獎號。甲、乙、丙、丁
4人依次從袋中隨機抽取一個簽、已知丙中獎了、則乙不中獎的概率為多少?()
A、5/8
B、3/7
C、3/8
D、5/7
【答案】:答案:D
解析:已知丙中獎,則剩余7個簽,還有2個是中獎號,可得乙不中獎概率為。故選D。24、甲乙兩車早上分別同時從A、B兩地出發駛向對方所在城市,在分別到達對方城市并各自花費1小時卸貨后,立刻出發以原速返回出發地。甲車的速度為60千米/小時,乙車的速度為40千米/小時,兩地之間相距480千米。問兩車第二次相遇距離兩車早上出發經過了多少個小時?()
A、13.4
B、14.4
C、15.4
D、16.4
【答案】:答案:C
解析:根據“分別同時從A.B兩地出發”、“兩車第二次相遇”,可知考查的是兩端出發的多次相遇問題,公式為(v1+v2)t=(2n-1)S。代入數據得(60+40)t=(2×2-1)×480,解得t=14.4,由“各自花費一小時卸貨”,故經過了14.4+1=15.4小時。故選C。25、2,6,18,54,()
A、186
B、162
C、194
D、196
【答案】:答案:B
解析:該數列是以3為公比的等比數列,故空缺項為:54×3=162。故選B。26、3,4,10,33,136,()
A、685
B、424
C、314
D、149
【答案】:答案:A
解析:4=(3+1)×1,10=(4+1)×2,33=(10+1)×3,136=(33+1)×4,an=(an-1+1)×(n-1)(n≥2),即所填數字應為(136+1)×5=685。故選A。27、某雜志為每篇投稿文章安排兩位審稿人,若都不同意錄用則棄用;若都同意則錄用;若兩人意見不同,則安排第三位審稿人,并根據其意見錄用或棄用,如每位審稿人錄用某篇文章的概率都是60%,則該文章最終被錄用的概率是()。
A、36%
B、50.4%
C、60%
D、64.8%
【答案】:答案:D
解析:根據題意,該文章最終被錄用可分為以下兩種情況:(1)前兩位審稿人都同意,概率為0.6×0.6=0.36;(2)前兩位審稿人只有一人同意且第三位審稿人同意,概率為;故該文章最終被錄用的概率為0.36+0.288=0.648=64.8%。故選D。28、11,34,75,(),235
A、138
B、139
C、140
D、14
【答案】:答案:C
解析:思路一:11=23+3;34=33+7;75=43+11;140=53+15;235=63+19其中2,3,4,5,6等差;3,7,11,15,19等差。思路二:二級等差。故選C。29、30,42,56,72,()
A、86
B、60
C、90
D、94
【答案】:答案:C
解析:第一次做差之后為12、14、16,是公差為2的等差數列,下一個應為18,原數列下一項為18+72=90。故選C。30、5,10,20,(),80
A、30
B、40
C、50
D、60
【答案】:答案:B
解析:公比為2的等比數列。故選B。31、某服裝店有一批襯衣共76件,分別賣給了33位顧客,每位顧客最多買了3件。襯衣定價為100元,買1件按原價,買2件總價打九折,買3件總價打八折。最后賣完這批襯衣共收入6460元,則買了3件的顧客有()位。
A.4
B.8
C.14
D.15
【答案】:答案:C
解析:由題意可設買了1件、2件、3件衣服的人數分別為x、y、z人,則可得x+y+z=33,x+2y+3z=76,,聯立求解可得x=4,y=15,z=14。故正確答案為C。32、1,2,0,3,-1,4,()
A、-2
B、0
C、5
D、6
【答案】:答案:A
解析:奇數項1、0、-1、(-2)是公差為-1的等差數列;偶數項2、3、4是連續自然數。故選A。33、有一1500米的環形跑道,甲,乙二人同時同地出發,若同方向跑,50分鐘后甲比乙多跑一圈,若以反方向跑,2分鐘后二人相遇,則乙的速度為()。
A、330米/分鐘
B、360米/分鐘
C、375米/分鐘
D、390米/分鐘
【答案】:答案:B
解析:同向追及50分鐘后甲比乙多跑一圈得:(V甲-V乙)×50=1500;由反向跑2分鐘后相遇有:(V甲+V乙)×2=1500,解得V乙=360(米/分鐘)。故選B。34、4,5,9,18,34,()
A、59
B、37
C、46
D、48
【答案】:答案:A
解析:該數列的后項減去前項得到一個平方數列,故空缺處應為34+25=59。故選A。35、有一支參加閱兵的隊伍正在進行訓練,這支隊伍的人數是5的倍數且不少于1000人,如果按每橫排4人編隊,最后少3人,如果按每橫排3人編隊,最后少2人;如果按每橫排2人編隊,最后少1人。請問,這支隊伍最少有多少人?()
A、1045
B、1125
C、1235
D、1345
【答案】:答案:A
解析:問最少,由小到大代入選項:代入A選項,(1045+3)能被4整除;(1045+2)能被3整除;(1045+1)能被2整除,滿足題意。故選A。36、3,4,10,33,136,()
A、685
B、424
C、314
D、149
【答案】:答案:A
解析:4=(3+1)×1,10=(4+1)×2,33=(10+1)×3,136=(33+1)×4,an=(an-1+1)×(n-1)(n≥2),即所填數字應為(136+1)×5=685。故選A。37、3,7,17,115,()
A、132
B、277
C、1951
D、1955
【答案】:答案:C
解析:3×7-4=17,7×17-4=115,即所填數字為17×115-4=1951。故選C。38、A、B、C三個試管中各盛有10克、20克、30克水,把某種濃度的鹽水10克倒入A中,充分混合后從A中取出10克倒入B中,再充分混合后從B中取出10克倒入C中,最后得到C中鹽水的濃度為0.5%。則開始倒入試管A中的鹽水濃度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含鹽量為(30+10)×0.5%=0.2克,即從B中取出的10克中含鹽0.2克,則B的濃度為0.2÷10=2%,進而求出B中含鹽量為(20+10)×2%=0.6克,即從A中取出的10克中含鹽0.6克,可得A的濃度為0.6÷10=6%,進一步得出A中含鹽量為(10+10)×6%=1.2克,故開始倒入A中的鹽水濃度為1.2÷10=12%。故選A。39、2,6,13,39,15,45,23,()
A、46
B、66
C、68
D、69
【答案】:答案:D
解析:6=2×3,39=13×3,45=15×3。兩個數為一組,每組中的第二個數是第一個數的三倍,即所填數字為23×3=69。故選D。40、10,9,17,50,()
A、100
B、99
C、199
D、200
【答案】:答案:C
解析:10×1-1=9;9×2-1=17;17×3-1=50;50×4-1=199。故選C。41、8,3,17,5,24,9,26,18,30,()
A、22
B、25
C、33
D、36
【答案】:答案:B
解析:多重數列。很明顯數列很長,確定為多重數列。先考慮交叉,發現沒有規律,無對應的答案。因為總共十項,考慮兩兩分組,再內部作加減乘除方等運算,發現每兩項的和依次為11,22,33,44,(55=30+25)。故選B。42、0,4,18,48,()
A、96
B、100
C、125
D、136
【答案】:答案:B
解析:思路一:0=0×12;4=1×22;18=2×32;48=3×42;100=4×52。思路二:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100;項數12345;乘以0,2,6,12,20=>作差2,4,6,8。故選B。43、6,3,5,13,2,63,()
A、-36
B、-37
C、-38
D、-39
【答案】:答案:B
解析:6×3-5=13,3×5-13=2,5×13-2=63,第四項=第一項×第二項-第三項,即所填數字為13×2-63=-37。故選B。44、甲乙兩人需托運行李。托運收費標準為10kg以下6元/kg,超出10kg部分每公斤收費標準略低一些。已知甲乙兩人托運費分別為109.5元、78元,甲的行李比乙重了50%。那么,超出10kg部分每公斤收費標準比10kg以內的低了()元。
A.1.5
B.2.5
C.3.5
D.4.5
【答案】:答案:A
解析:解析一:分段計費問題,設乙的行李超出的重量為x,即乙的行李總重量為10+x,則甲的行李重量為1.5×(10+x)。所以計算超出部分的重量為1.5×(10+x)-10=5+1.5x,超出金額為49.5元,所以按照比例,乙的行李超出了重量x,超出金額為18元,得到,解得x=4,所以超出部分單價為18÷4=4.5元。所以超出10公斤部分每公斤收費標準比10公斤以內的低了6-4.5=1.5元。解析二:盈虧思路,由于甲的行李重量比乙的多50%,所以分段看,乙超出部分為18元,所以對應的多50%的重量,應該是27元。則從甲超出的49.5元中扣除27元,還剩22.5元,這個錢數應該對應著10公斤的50%,即5公斤22.5元。所以每公斤超出部分為4.5元,超出10公斤部分每公斤收費標準比10公斤以內的低了6-4.5=1.5,得解。故正確答案為A。速解:靠常識解決,題目中說“超出10公斤部分每公斤收費標準略低一些。”所以選稍微低一點的45、以正方形的4個頂點和中心點中的任意三點為頂點可以構成幾種面積不等的三角形?()
A、1
B、2
C、3
D、4
【答案】:答案:B
解析:若3個點都從正方形的4個頂點中取,則得到的三角形面積是正方形面積的一半:若3個點中有一個是中心點,其他2個是正方形的頂點,則得到的三角形面積是正方形面積的四分之一。因此,可以構成2種面積不等的蘭角形。故選B。46、某城市居民用水價格為:每戶每月不超過5噸的部分按4元/噸收取;超過5噸不超過10噸的部分按6元/噸收取;超過10噸的部分按8元/噸收取。某戶居民兩個月共交水費108元,則該戶居民這兩個月用水總量最多為多少噸?()
A、17.25
B、21
C、21.33
D、24
【答案】:答案:B
解析:總費用一定,要使兩個月的用水總量最多,需盡量使用低價水。先將兩個月4元/噸的額度用完,花費4×5×2=40(元);再將6元/噸的額度用完,花費6×5×2=60(元)。由兩個月共交水費108元可知,還剩108-40-60=8(元),可購買1噸單價為8元/噸的水。該戶居民這兩個月用水總量最多為5×2+5×2+1=21(噸)。故選B。47、某樓盤的地下停車位,第一次開盤時平均價格為15萬元/個;第二次開盤時,車位的銷售量增加了一倍、銷售額增加了60%。那么,第二次開盤的車位平均價格為()。
A、10萬元/個
B、11萬元/個
C、12萬元/個
D、13萬元/個
【答案】:答案:C
解析:銷售額=平均價格×銷售量,已知第一次開盤平均價格為15萬元/個,賦銷售量為1,則銷售額為15萬。第二次開盤時,銷售量增加了一倍,即為2,銷售額增加了60%,得銷售額為15×(1+60%)=24(萬元),故第二次開盤平均價格為24÷2=12(萬元/個)。故選C。48、-1,1,7,25,79,()
A、121
B、241
C、243
D、254
【答案】:答案:B
解析:相鄰兩項之差依次是2,6,18,54,(162),這是一個公比為3的等比數列,79+162=(241)。故選B。49、某種茶葉原價30元一包,為了促銷,降低了價格,銷量增加了二倍,收入增加了五分之三,則一包茶葉降價()元。
A、12
B、14
C、13
D、11
【答案】:答案:B
解析:設原來茶葉的銷量為1,那么現在銷量為3。原來收入為30元,現在收入為30×(1+3/5)=48元,每包茶葉為48÷3=16元,降價30-16=14元。故選B。50、1806,1510,1214,918,()
A、724
B、722
C、624
D、622
【答案】:答案:D
解析:百位和千位看做一個數列,是18,15,12,9,構成公差為-3的等差數列,所以下一項應為6;十位和個位看做一個數列,是06,10,14,18,構成公差為4的等差數列,所以下一項應為22。故未知項應為622。故選D。51、某商店以5元/斤的價格購入一批蔬菜,上午以8元/斤的價格賣出總進貨量的60%,中午以上午售出價的8折賣出總進貨量的20%,下午以中午售出價的一半賣出剩余貨量的一半,最后獲利210元。則該商店一共購入多少斤蔬菜?()
A、140
B、150
C、160
D、180
【答案】:答案:B
解析:賦值購進的量為10斤,上午以8元/斤的價格賣出6斤,中午以6.4元/斤的價格賣出2斤,下午以3.2元/斤的價格賣出1斤,總收入=8×6+6.4×2+3.2×1=64元,總利潤=64-5×10=14元,實際購入(210/14)×10=150斤。故選B。52、2,7,13,20,25,31,()
A、35
B、36
C、37
D、38
【答案】:答案:D
解析:依次將相鄰兩個數中后一個數減去前一個數得5,6,7,5,6,為(5,6,7)三個數字組成的循環數列,即所填數字為31+7=38。故選D。53、1,8,9,4,(),1/6
A、3
B、2
C、1
D、1/3
【答案】:答案:C
解析:1=14,8=23,9=32,4=41,1=50,1/6=6(-1)。故選C。54、從A地到B地為上坡路。自行車選手從A地出發按A-B-A-B的路線行進,全程平均速度為從B地出發,按B-A-B-A的路線行進的全程平均速度的4/5,如自行車選手在上坡路與下坡路上分別以固定速度勻速騎行,問他上坡的速度是下坡速度的()。
A、1/2
B、1/3
C、2/3
D、3/5
【答案】:答案:A
解析:S=VT,當S一定的時候,VT成反比,兩次行程的平均速度之比是4:5,故兩次行程所用時間之比T1:T2=5:4。設一個下坡的時間是1,一個上坡的時間是n,則上坡速度是下坡速度的1/n。A-B-A-B的過程經歷了2個上坡和1個下坡,則T1=2n+1;B-A-B-A的過程經歷了2個下坡和1個上坡,則T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故選A。55、從1開始的第2009個奇數是()。
A、4011
B、4013
C、4015
D、4017
【答案】:答案:D
解析:因為每兩個相鄰的奇數均相差2,而第2009個奇數是第1個奇數1之后的第2008個奇數,那么第2009個奇數應該是1+2008×2=4017。故選D。56、三個學校的志愿隊分別去敬老院照顧老人,A學校志愿隊每隔7天去一次,B學校志愿隊每隔9天去一次,C學校志愿隊每隔14天去一次,三個隊伍周三第一次同時去敬老院,問下次同時去敬老院是周幾?()
A、周三
B、周四
C、周五
D、周六
【答案】:答案:B
解析:根據每隔7天去一次,可知A每8天去一次敬老院,同理,B、C每10天、15天去一次敬老院。下次同時去敬老院應該為120(8、10、15的最小公倍數)天后。每周7天,120÷7=17…1,故三人下次同時去敬老院應該是周三后推一天,即周四。故選B。57、某樓盤的地下停車位,第一次開盤時平均價格為15萬元/個;第二次開盤時,車位的銷售量增加了一倍、銷售額增加了60%。那么,第二次開盤的車位平均價格為()。
A、10萬元/個
B、11萬元/個
C、12萬元/個
D、13萬元/個
【答案】:答案:C
解析:銷售額=平均價格×銷售量,已知第一次開盤平均價格為15萬元/個,賦銷售量為1,則銷售額為15萬。第二次開盤時,銷售量增加了一倍,即為2,銷售額增加了60%,得銷售額為15×(1+60%)=24(萬元),故第二次開盤平均價格為24÷2=12(萬元/個)。故選C。58、某校二年級全部共3個班的學生排隊.每排4人,5人或6人,最后一排都只有2人.這個學校二年級有()名學生。
A、120
B、122
C、121
D、123
【答案】:答案:B
解析:由題意知,學生數除以4、5、6均余2,由代入法可以得到,只有B項滿足條件。59、將所有由1、2、3、4組成且沒有重復數字的四位數,按從小到大的順序排列,則排在第12位的四位數是()。
A、3124
B、2341
C、2431
D、3142
【答案】:答案:C
解析:當千位數字是1時有=6種四位數,當千位數字是2時也有=6種四位數,因此排在第12位的就是千位數字為2的最大四位數,即2431。故選C。60、1806,1510,1214,918,()
A、724
B、722
C、624
D、622
【答案】:答案:D
解析:百位和千位看做一個數列,是18,15,12,9,構成公差為-3的等差數列,所以下一項應為6;十位和個位看做一個數列,是06,10,14,18,構成公差為4的等差數列,所以下一項應為22。故未知項應為622。故選D。61、3,11,13,29,31,()
A、52
B、53
C、54
D、55
【答案】:答案:D
解析:奇偶項分別相差11-3=8,29-13=16=8×2,問號-31=24=8×3則可得?=55。故選D。62、102,314,526,()
A、624
B、738
C、809
D、849
【答案】:答案:B
解析:314-102=212,526-314=212。后一項-前一項=212,即所填數字為536+212=738。故選B。63、2,7,14,21,294,()
A、28
B、35
C、273
D、315
【答案】:答案:D
解析:21=7+14,14=2×7,294=14×21,為兩項相加、相乘交替得到后-項,即所填數字為21+294=315。故選D。64、1,1,2,6,24,()
A、11
B、50
C、80
D、120
【答案】:答案:D
解析:依次將相鄰兩個數中后一個數除以前一個數得1,2,3,4,為連續自然數列,即所填數字為24×5=120。故選D。65、要將濃度分別為20%和5%的A、B兩種食鹽水混合配成濃度為15%的食鹽水900克,問5%的食鹽水需要多少克?()
A、250
B、285
C、300
D、325
【答案】:答案:C
解析:設需要5%的食鹽水x克,則需要20%的食鹽水(900-x)克;根據混合后濃度為15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故選C。66、2.1,2.2,4.1,4.4,16.1,()
A、32.4
B、16.4
C、32.16
D、16.16
【答案】:答案:D
解析:偶數項的小數部分和整數部分相同。故選D。67、4,8,28,216,()
A、6020
B、2160
C、4200
D、4124
【答案】:答案:A
解析:4×(8-1)=28,8×(28-1)=216,即所填數字為28×(216-1)=6020。故選A。68、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,奇數項是2,偶數項構成公差為1的等差數列,即所填數字為6+(-1)=5。故選B。69、小孫的口袋里有四顆糖,一顆巧克力味的,一顆蘋果味的,兩顆牛奶味的。小孫任意從口袋里取出兩顆糖,他看了看后說,其中一顆是牛奶味的。問小孫取出的另一顆糖也是牛奶味的可能性(概率)是多少?()
A、1/3
B、1/4
C、1/5
D、1/6
【答案】:答案:C
解析:兩顆都是牛奶味的糖只有一種情況,而其中至少一顆是牛奶味的糖共有5種情況:(牛奶味1、蘋果味),(牛奶味1、巧克力味),(牛奶味2、蘋果味),(牛奶味2、巧克力味),(牛奶味1、牛奶味2)。因此取出的另一顆糖也是牛奶味的概率為1/5。故選C。70、1,3,2,6,11,19,()
A、24
B、36
C、29
D、38
【答案】:答案:B
解析:該數列為和數列,即前三項之和為第四項。故空缺處應為6+11+19=36。故選B。71、4,10,34,130,()
A、184
B、258
C、514
D、1026
【答案】:答案:C
解析:解法一:二級等差數列變式。解法二:從第三項開始,第三項等于第二項的5倍減去第一項的4倍,即34=5×10-4×4,130=5×34-4×10,(514)=5×130-4×34。故選C。72、8,10,14,18,()
A、24
B、32
C、26
D、20
【答案】:答案:C
解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故選C。73、-1,6,25,62,()
A、123
B、87
C、150
D、109
【答案】:答案:A
解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故選A。74、某年的10月里有5個星期六,4個星期日,則這年的10月1日是?()
A、星期一
B、星期二
C、星期三
D、星期四
【答案】:答案:D
解析:10月有31天,因為有5個星期六,4個星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故選D。75、一條馬路的兩邊各立著10盞電燈,現在為了節省用電,決定每邊關掉3盞,但為了安全,道路起點和終點兩邊的燈必須是亮的,而且任意一邊不能連續關掉兩盞。問總共有多少種方案?()
A、120
B、320
C、400
D、420
【答案】:答案:C
解析:每一邊7盞亮著的燈形成6個空位,把3盞熄滅的燈插進去,則共有=400種方案。故選C。76、2,4,12,32,88,()
A、140
B、180
C、220
D、240
【答案】:答案:D
解析:12=2×(2+4),32=2×(4+12),88=2×(32+12),第三項=2×(第一項+第二項),即所填數字為2×(88+32)=240。故選D。77、某城市居民用水價格為:每戶每月不超過5噸的部分按4元/噸收取;超過5噸不超過10噸的部分按6元/噸收取;超過10噸的部分按8元/噸收取。某戶居民兩個月共交水費108元,則該戶居民這兩個月用水總量最多為多少噸?()
A、17.25
B、21
C、21.33
D、24
【答案】:答案:B
解析:總費用一定,要使兩個月的用水總量最多,需盡量使用低價水。先將兩個月4元/噸的額度用完,花費4×5×2=40(元);再將6元/噸的額度用完,花費6×5×2=60(元)。由兩個月共交水費108元可知,還剩108-40-60=8(元),可購買1噸單價為8元/噸的水。該戶居民這兩個月用水總量最多為5×2+5×2+1=21(噸)。故選B。78、2,3,6,15,()
A、25
B、36
C、42
D、64
【答案】:答案:C
解析:相鄰兩項間做差。做差后得到的數為1,3,9;容易觀察出這是一個等比數列,所以做差數列的下一項為27,則答案為15+27=42。故選C。79、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,為奇數項是2偶數項為公差為1的等差數列,即所填數字為6+(-1)=5。故選B。80、甲、乙、丙三輛汽車分別從A地開往千里之外的B地。若乙比甲晚出發30分鐘,則乙出發后2小時追上甲;若丙比乙晚出發20分鐘,則丙出發后5小時追上乙。若甲出發10分鐘后乙出發,當乙追上甲時,丙才出發,則丙追上甲所需時間是()。
A、110分鐘
B、150分鐘
C、127分鐘
D、128分鐘
【答案】:答案:B
解析:設甲、乙、丙三輛汽車的速度分別為x、y、z。由于甲行駛30分鐘的路程,乙需要2小時才能追上,則30x=(y-x)×2×60,化簡得x∶y=4∶5。又因乙行駛20分鐘的路程,丙需要5小時才能追上,則20y=(z-y)×5×60,化簡得y∶z=15∶16。所以三輛汽車的速度x∶y∶z=12∶15∶16。賦值甲、乙、丙的速度分別為12、15、16,甲出發10分鐘后乙出發,則乙追上甲的時間為(分鐘),故丙出發時甲已經行駛10+40=50(分鐘),設丙追上甲所需時間是t分鐘,可得方程12×50=(16-12)×t,解得t=150。故選B。81、某木場有甲,乙,丙三位木匠師傅生產桌椅,甲每天能生產12張書桌或13把椅子;乙每天能生產9張書桌或12把椅子,丙每天能生產9張書桌或15把椅子,現在書桌和椅子要配套生產(每套一張書桌一把椅子),則7天內這三位師傅最多可以生產桌椅()套。
A、116
B、129
C、132
D、142
【答案】:答案:B
解析:將甲、乙、丙三位木匠師傅生產桌椅的效率列表如下,分析可知,甲生產書桌的相對效率最高,丙生產椅子的相對效率最高,則安排甲7天全部生產書桌,丙7天全部生產椅子,乙協助甲丙完成。甲7天可生產桌子12×7=84(張),丙7天可生產椅子15×7=105(把)。設乙生產書桌x天,則生產椅子(7-x)天,當生產的書桌數與椅子數相同時,獲得套數最多,可列方程84+9x=105+12×(7-x),解得x=5,則乙可生產書桌9×5=45(張)。故7天內這三位師傅最多可以生產桌椅84+45=129(套)。故選B。82、某陶瓷公司要到某地推銷瓷器,公司與該地相距900千米。已知瓷器成本為每件4000元,每件瓷器運費為2.5元/千米。如果在運輸及銷售過程中瓷器的損耗為25%,那么該公司要想實現20%的利潤率,瓷器的零售價應是()元。
A、8000
B、8500
C、9600
D、1000
【答案】:答案:D
解析:以一件瓷器為例,1件瓷器成本為4000元,運費為2.5×900=2250元,則成本為4000+2250=6250元,要想實現20%的利潤率,應收入6250×(1+20%)=7500元;由于損耗,實際的銷售產品數量為1×(1-25%)=75%,所以實際零售價為7500÷75%=1000元。故選D。83、為幫助果農解決銷路,某企業年底買了一批水果,平均發給每部門若干筐之后還多了12筐,如果再買進8筐則每個部門可分得10筐,則這批水果共有()筐。
A、192
B、198
C、200
D、212
【答案】:答案:A
解析:由于再買進8筐則每個部門可分得10筐,則總筐數加8應能被10整除,排除B、C。將A項代入題目,可得部門數為(192+8)÷10=20(個),則原來平均發給每部門(192-12)÷20=9(筐),水果筐數為整數解,符合題意。故選A。84、一人上樓,邊走邊數臺階。從一樓走到四樓,共走了54級臺階。如果每層樓之間的臺階數相同,他一直要走到八樓,問他從一樓到八樓一共要走多少級臺階?()
A、126
B、120
C、114
D、108
【答案】:答案:A
解析:從一樓走到四樓,共走了54級臺階,而他實際走了3層樓的高度,所以每層樓的臺階數為54÷3=18級。他從一樓到八樓一共要走7層樓,因此共要走7×18=126級臺階。故選A。85、一個四邊形廣場,它的四邊長分別是60米、72米、96米、84米,現在四邊上植樹,四角需種樹,而且每兩棵樹的間隔相等,那么,至少要種多少棵樹?()
A、22
B、25
C、26
D、30
【答案】:答案:C
解析:根據四角需種樹,且每兩棵樹的間隔相等可知,間隔距離應為四邊邊長的公約數;要使棵樹至少,則間隔距離要盡量最大,公約數最大為12(60、72、96、84的最大公約數)。故棵數=段數=長度÷間距=(60+72+84+96)÷12=26(棵)。故選C。86、甲、乙和丙三種不同濃度、不同規格的酒精溶液,每瓶重量分別為3公斤、7公斤和9公斤,如果將甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分別混合,得到的酒精濃度分別為50%,50%和60%。如果將三種酒精合各一瓶混合,得到的酒精中要加入多少公斤純凈水后,其濃度正好是50%?()
A、1
B、1.3
C、1.6
D、1.9
【答案】:答案:C
解析:甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分別混合,相當于兩瓶甲、兩瓶乙、兩瓶丙混合,前兩種濃度都是50%,所以只需要加入適量水使得乙丙混合濃度由60%變為50%即可。設加水x,可將濃度為60%的酒精溶液溶度變為50%,即,解得x=3.2(公斤)。此時甲乙,甲丙和乙丙溶液各一瓶混合后濃度必然為50%。若甲、乙和丙各一瓶混合時濃度仍然為50%,則需加水為(公斤)。故選C。87、有一架天平,只有5克和30克的砝碼各一個。現在要用這架天平把300克味精平均分成3份,那么至少需要稱多少次?()
A、3次
B、4次
C、5次
D、6次
【答案】:答案:A
解析:第1次,用30克和5克砝碼稱出35克味精;第2次,再35克味精作為砝碼,和30克砝碼一起稱出65克味精,此時已稱出100克味精;第3次,用100克味精作為砝碼稱出100克味精,還剩100克。把300克味精平均分為3份。故“至少”需要3次。故選A。88、一個人從家到公司,當他走到路程的一半的時候,速度下降了10%,問:他走完全程所用時間的前半段和后半段所走的路程比是()。
A、10:9
B、21:19
C、11:9
D、22:18
【答案】:答案:B
解析:設前半程速度為10,則后半程速度為9,路程總長為180,則前半程用時9,后半程用時10,總耗時19,一半為9.5。因此前半段時間走過的路程為90+9×(9.5-9)=94.5,后半段時間走過的路程為9×9.5=85.5。兩段路程之比為94.5:85.5=21:19。故選B。89、有蘋果若干個,若把其換成桔子,則多換5個;若把其換成菠蘿,則少掉7個,已知每個桔子4角9分錢,每個菠蘿7角錢,每個蘋果的單價是多少?()
A、5角
B、5角8分
C、5角6分
D、5角4分
【答案】:答案:C
解析:此題可理解為:把蘋果全部賣掉,得到錢若干,若用這些錢買成同樣數量的桔子,則剩下49×5=245分,若用這些錢買成同樣數量的菠蘿,則缺少70×7=490分,所以蘋果個數=(245+490)÷(70-49)=35個,蘋果總價=49×35+49×5=1960分,每個蘋果單價=1960÷35=56分=5角6分。故選C。90、從A地到B地為上坡路。自行車選手從A地出發按A-B-A-B的路線行進,全程平均速度為從B地出發,按B-A-B-A的路線行進的全程平均速度的4/5,如自行車選手在上坡路與下坡路上分別以固定速度勻速騎行,問他上坡的速度是下坡速度的()。
A、1/2
B、1/3
C、2/3
D、3/5
【答案】:答案:A
解析:S=VT,當S一定的時候,VT成反比,兩次行程的平均速度之比是4:5,故兩次行程所用時間之比T1:T2=5:4。設一個下坡的時間是1,一個上坡的時間是n,則上坡速度是下坡速度的1/n。A-B-A-B的過程經歷了2個上坡和1個下坡,則T1=2n+1;B-A-B-A的過程經歷了2個下坡和1個上坡,則T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故選A。91、118,199,226,(),238
A、228
B、230
C、232
D、235
【答案】:答案:D
解析:相鄰兩項后一項減前一項,199-118=81,226-199=27,235-226=9,238-235=3,是公比為的等比數列,即所填數字為238-3=226+9=235。故選D。92、四人年齡為相鄰的自然數列且最年長者不超過30歲,四人年齡之乘積能被2700整除且不能被81整除。則四人中最年長者多少歲?()
A、30
B、29
C、28
D、27
【答案】:答案:C
解析:結合最年長者,優先從選項最大值代入:A選項:30×29×28×27,尾數只有一個0,不能被2700整除,排除;B選項:29×28×27×26,尾數不為0,不能被2700整除,排除;C選項:28×27×26×25=(4×7)×27×26×25,能被2700整除,不能被81整除,正確。故選C。93、13,14,16,21,(),76
A、23
B、35
C、27
D、22
【答案】:答案:B
解析:相連兩項相減:1,2,5,();再減一次:1,3,9,27;()=14;21+14=35。故選B。94、4,5,7,9,13,15,()
A、17
B、19
C、18
D、20
【答案】:答案:B
解析:各項減2后為質數列,故下一項為17+2=19。故選B。95、某單位組織工會活動,30名員工自愿參加做游戲。游戲規則:按1~30號編號并報數,第一次報數后,單號全部站出來,然后每次余下的人中第一個開始站出來,隔一人站出來一個人。最后站出來的人給大家唱首歌。那么給大家唱歌的員工編號是()。
A、14
B、16
C、18
D、20
【答案】:答案:B
解析:第一次報數后,單號全部站出來,剩余號碼為2、4、6、8、10······30,均為2的倍數;每次余下的人中第一個開始站出來,隔一人站出來一個人,剩余號碼為4、8、12、16、20、24、28,均為4的倍數;再從余下的號碼中第一個人開始站出來,隔一個人站出來一個人,剩余號碼為8、16、24,均為8的倍數;重復上一次的步驟,剩余16號,為16的倍數。1—30中16的倍數只有16。故選B。96、玉米的正常市場價格為每公斤1.86元到2.18元,近期某地玉米價格漲至每公斤2.68元。經測算,向市場每投放儲備玉米100噸,每公斤玉米價格下降0.05元。為穩定玉米價格,向該地投放儲備玉米的數量不能超過()。
A、800噸
B、1080噸
C、1360噸
D、1640噸
【答案】:答案:D
解析:要穩定玉米價格,玉米的價格必須調整至正常區間。所以最低下降為每公斤1.86元,即下降了2.68-1.86=0.82(元)。因為每投放100噸,價格下降0.05元,所以投放玉米的數量不能超過0.82÷0.05×100=1640(噸)。故選D。97、某商店以5元/斤的價格購入一批蔬菜,上午以8元/斤的價格賣出總進貨量的60%,中午以上午售出價的8折賣出總進貨量的20%,下午以中午售出價的一半賣出剩余貨量的一半,最后獲利210元。則該商店一共購入多少斤蔬菜?()
A、140
B、150
C、160
D、180
【答案】:答案:B
解析:賦值購進的量為10斤,上午以8元/斤的價格賣出6斤,中午以6.4元/斤的價格賣出2斤,下午以3.2元/斤的價格賣出1斤,總收入=8×6+6.4×2+3.2×1=64元,總利潤=64-5×10=14元,實際購入(210/14)×10=150斤。故選B。98、90,85,81,78,()
A、75
B、74
C、76
D、73
【答案】:答案:C
解析:后項減去前項,可得-5、-4、-3、(-2),這是一個公差為1的等差數列,所以下一項為78-2=76。故選C。99、90,85,81,78,()
A、75
B、74
C、76
D、73
【答案】:答案:C
解析:后項減去前項,可得-5、-4、-3、(-2),這是一個公差為1的等差數列,所以下一項為78-2=76。故選C。100、將17拆分成若干個自然數的和,這些自然數的乘積的最大值是多少?()
A、256
B、486
C、556
D、376
【答案】:答案:B
解析:若把一個整數拆分成若干個自然數之和,有大于4的數,則把大于4的這個數再分成一個2與另一個大于2的自然數之和,則這個2與大于2的這個數的乘積肯定比這個大于4的數更大。另外,如果拆分的數中含有1,則對乘積增大沒有貢獻,因此不能考慮。因此,要使加數之積最大,加數只能是2和3。但是,若加數中含有3個2,則不如將它換成2個3。因為2×2×2=8,而3×3=9。故拆分出的自然數中,至多含有兩個2,而其余都是3。故將17拆分為17=3+3+3+3+3+2時,其乘積最大,最大值為243×2=486。故選B。101、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故選C。102、60名員工投票從甲、乙、丙三人中評選最佳員工,選舉時每人只能投票選舉一人,得票最多的人當選。開票中途累計,前30張選票中,甲得15票,乙得10票,丙得5票。問在尚未統計的選票中,甲至少再得多少票就一定當選?()
A、15
B、13
C、10
D、8
【答案】:答案:B
解析:構造最不利,由題意,還剩30名員工沒有投票,考慮最不利的情況,乙對甲的威脅最大,先給乙5張選票,甲乙即各有15張選票,其余25張選票中,甲只要在獲得13張選票就可以確定當選。故選B。103、0,1,3,10,()
A、101
B、102
C、103
D、104
【答案】:答案:B
解析:思路一:0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102。思路二:0(第一項)2+1=1(第二項)12+2=332+1=10102+2=102,其中所加的數呈1,2,1,2規律。思路三:各項除以3,取余數=>0,1,0,1,0,奇數項都能被3整除,偶數項除3余1。故選B。104、調研人員在一次市場調查活動中收回了435份調查問卷,其中80%的調查問卷上填寫了被調查者的手機號碼。那么調研人員至少需要從這些調查表中隨機抽出多少份,才能保證一定能找到兩個手機號碼后兩位相同的被調查者?()
A、101
B、175
C、188
D、200
【答案】:答案:C
解析:在435份調查問卷中有435×20%=87份沒有寫手機號;且手機號碼后兩位可能出現的情況一共10×10=100種,因此要保證一定能找到兩個手機號碼后兩位相同的被調查者,至少需要抽取87+100+1=188份。故選C。105、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,奇數項是2,偶數項構成公差為1的等差數列,即所填數字為6+(-1)=5。故選B。106、-1,6,25,62,()
A、123
B、87
C、150
D、109
【答案】:答案:A
解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故選A。107、某年的10月里有5個星期六,4個星期日,則這年的10月1日是?()
A、星期一
B、星期二
C、星期三
D、星期四
【答案】:答案:D
解析:10月有31天,因為有5個星期六,4個星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故選D。108、5,12,24,36,52,()
A、58
B、62
C、68
D、72
【答案】:答案:C
解析:5=2+3,12=5+7,24=11+13,36=17+19,52=23+29,全是從小到大的質數和,所以下一個是31+37=68。故選C。109、假設地球上新生成的資源的增長速度是一定的,照此推算,地球上的資源可供110億人生活90年,或者可供90億人生活210年。為了使人類能夠不斷繁衍,那么地球最多能養活多少億人?()
A、70
B、75
C、80
D、100
【答案】:答案:B
解析:設地球的原始資源可供x億人生存一年,每年增長的資源可供y億人生存一年,即x+90y=90×110,x+210y=210×90,兩式聯立得y=75,為了使人類能夠不斷繁衍,那么地球最多能養活75億人。故選B。110、某旅游部門規劃一條從甲景點到乙景點的旅游線路,經測試,旅游船從甲到乙順水勻速行駛需3小時;從乙返回甲逆水勻速行駛需4小時。假設水流速度恒定,甲乙之間的距離為y公里,旅游船在靜水中勻速行駛y公里需要x小時,則x滿足的方程為()。
A、1/3-1/x=1/x-1/4
B、1/3-1/x=1/4+1/x
C、1/(x+3)=1/4-1/x
D、1/(4-x)=1/x+1/3
【答案】:答案:A
解析:由題意可知,旅游船的靜水速度為y/x公里/時,順水速度為y/3公里/時,逆水速度為y/4公里/時。由水速=水速度-靜水速度=靜水速度-逆水速度,我們可得:y/3-y/x=y/x-y/4,消去y,得:1/3-1/x=1/x-1/4,故選A。考點點撥:解決流水問題的關鍵在于找出船速、水速、順水速度和逆水速度四個量,然后根據其之間的關系求出未知量。故選A。111、甲、乙和丙三種不同濃度、不同規格的酒精溶液,每瓶重量分別為3公斤、7公斤和9公斤,如果將甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分別混合,得到的酒精濃度分別為50%,50%和60%。如果將三種酒精合各一瓶混合,得到的酒精中要加入多少公斤純凈水后,其濃度正好是50%?()
A、1
B、1.3
C、1.6
D、1.9
【答案】:答案:C
解析:甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分別混合,相當于兩瓶甲、兩瓶乙、兩瓶丙混合,前兩種濃度都是50%,所以只需要加入適量水使得乙丙混合濃度由60%變為50%即可。設加水x,可將濃度為60%的酒精溶液溶度變為50%,即,解得x=3.2(公斤)。此時甲乙,甲丙和乙丙溶液各一瓶混合后濃度必然為50%。若甲、乙和丙各一瓶混合時濃度仍然為50%,則需加水為(公斤)。故選C。112、1/2,1,1,(),9/11,11/13
A、2
B、3
C、1
D、9
【答案】:答案:C
解析:1/2,1,1,(),9/11,11/13=>1/2,3/3,5/5,7/7,9/11,11/13=>分子1,3,5,7,9,11等差;分母2,3,5,7,11,13連續質數列。故選C。113、1,2,3,6,12,()
A、16
B、20
C、24
D、36
【答案】:答案:C
解析:分3組=>(1,2),(3,6),(12,24)=>每組后項除以前項=>2、2、2。故選C。114、水面上有三艘同向行駛的輪船,其中甲船的時速為63公里,乙、丙兩船的時速均為60公里,但由于故障,丙船每連續行駛30分鐘后必須停船2分鐘。早上10點,三船到達同一位置,問1小時后,甲、丙兩船最多相距多少公里?()
A、5
B、7
C、9
D、11
【答案】:答案:B
解析:1小時內,甲船行駛了63公里,丙船最多停車4分鐘,即行駛56分鐘,行駛路程為56公里。故最多相距7公里。故選B。115、187,259,448,583,754,()
A、847
B、862
C、915
D、944
【答案】:答案:B
解析:各項數字和均為16。故選B。116、30,42,56,72,()
A、86
B、60
C、90
D、94
【答案】:答案:C
解析:第一次做差之后為12、14、16,是公差為2的等差數列,下一個應為18,原數列下一項為18+72=90。故選C。117、0,6,24,60,()
A、70
B、80
C、100
D、120
【答案】:答案:D
解析:0=0×1×2,6=1×2×3,24=2×3×4,60=3×4×5,()=4×5×6=120。另解,0=13-1,6=23-2,24=33-3,60=43-4,()=53-5=120。故選D。118、8,10,14,18,()
A、24
B、32
C、26
D、20
【答案】:答案:C
解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故選C。119、A、B、C三個試管中各盛有10克、20克、30克水,把某種濃度的鹽水10克倒入A中,充分混合后從A中取出10克倒入B中,再充分混合后從B中取出10克倒入C中,最后得到C中鹽水的濃度為0.5%。則開始倒入試管A中的鹽水濃度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含鹽量為(30+10)×0.5%=0.2克,即從B中取出的10克中含鹽0.2克,則B的濃度為0.2÷10=2%,進而求出B中含鹽量為(20+10)×2%=0.6克,即從A中取出的10克中含鹽0.6克,可得A的濃度為0.6÷10=6%,進一步得出A中含鹽量為(10+10)×6%=1.2克,故開始倒入A中的鹽水濃度為1.2÷10=12%。故選A。120、97,95,92,87,()
A、81
B、79
C、74
D、66
【答案】:答案:B
解析:97+(-2)=95,95+(-3)=92,92+(-5)=87,數列中兩項之差形成的數列為-2,-3,-5,而(-2)+(-3)=(-5),后一項為前兩項之和,下一個數為(-3)+(-5)=(-8),即所填數字為87+(-8)=79。故選B。121、22×32×42×52值為多少?()
A、1437536
B、1527536
C、1436536
D、1537536
【答案】:答案:D
解析:原式中42是3的倍數,則原式結果應能被3整除。選項中只有D能被3整除。故選D。122、2,2,3,4,9,32,()
A、129
B、215
C、257
D、283
【答案】:答案:D
解析:2×2-1=3,3×2-2=4,4×3-3=9,9×4-4=32,第n+2項=第n項×第(n+1)項-n(n=1,2,…),即所填數字為32×9-5=283。故選D。123、鋼鐵廠某年總產量的1/6為型鋼類,1/7為鋼板類,鋼管類的產量正好是型鋼和鋼板產量之差的14倍,而鋼絲的產量正好是鋼管和型鋼產量之和的一半,而其它產品共為3萬噸。問該鋼鐵廠當年的產量為多少萬噸?()
A、48
B、42
C、36
D、28
【答案】:答案:D
解析:假設總產量為,則型鋼類產量為,鋼板類產量為,鋼管類為,鋼絲的產量為,則,解得萬噸,則總產量萬噸。故正確答案為D。124、甲、乙二人現在的年齡之和是一個完全平方數。7年前,他們各自的年齡都是完全平方數。再過多少年,他們的年齡之和又是完全平方數?()
A、20
B、18
C、16
D、9
【答案】:答案:B
解析:設七年前甲、乙的年齡分別為x、y歲,則七年后兩人的年齡和為(x+7)+(y+7)=x+y+14,根據題意x、y、x+y+14均為完全平方數。100以內的平方數有1、4、9、16、25、36、49、64、81、100,其中1+49+14=64,1、49、64均為完全平方數,則七年前甲1歲,乙49歲,現在甲為8歲,乙為56歲,年齡和為64,甲乙年齡和為偶數,下一個平方數為偶數的是100,需要再過(100-64)÷2=18年。故選B。125、在某城市中,有60%的家庭訂閱某種日報,有85%的家庭有電視機。假定這兩個事件是獨立的,今隨機抽出一個家庭,所抽家庭既訂閱該種日報又有電視機的概率是()。
A、0.09
B、0.25
C、0.36
D、0.51
【答案】:答案:D
解析:由于是獨立重復試驗,故既訂閱該中日報又有電視機的概率是60%×85%=51%。故選D。126、大年三十彩燈懸,彩燈齊明光燦燦,三三數時能數盡,五五數時剩一盞,七七數時剛剛好,八八數時還缺三,請你自己算一算,彩燈至少有多少盞?()
A、21
B、27
C、36
D、42
【答案】:答案:A
解析:由三三數時能數盡、七七數時剛剛好可知,彩燈的數量能同時被3和7整除,排除B、C。又由五五數時剩一盞可知,彩燈的數量除以5余1,排除D。故選A。127、甲和乙兩個公司2014年的營業額相同。2015年乙公司受店鋪改造工程影響,營業額比上年下降300萬元。而甲公司則引入電商業務,營業額比上年增長600萬元,正好是乙公司2015年營業額的3倍。則2014年兩家公司的營業額之和為多少萬元?()
A.900
B.1200
C.1500
D.1800
【答案】:答案:C
解析:設2014年兩家公司營業額為x萬元,由題意可得萬元,則2014年兩家公司營業額為故正確答案為C。128、2,12,40,112,()
A、224
B、232
C、288
D、296
【答案】:答案:C
解析:原數列可以寫成1×2,3×4,5×8,7×16,前一個乘數數列為1,3,5,7,是等差數列,下一項是9,后一個乘數數列為2,4,8,16,是等比數列,下一項是32,所以原數列空缺項為9×32=288。故選C。129、7,7,16,42,107,()
A、274
B、173
C、327
D、231
【答案】:答案:D
解析:做一次差后得到數列:13-1,23+1,33-1,43+1,53-1。故選D。130、2,3,13,175,()
A、30625
B、30651
C、30759
D、30952
【答案】:答案:B
解析:第一項乘以2,然后加第二項的平方等于第三項。2×2+3×3=13。第二項乘以2,然后加第三項的平方等于第四項。3×2+13×13=175。第三項乘以2,然后加第四項的平方等于第五項。13×2+175×175=30651。故選B。131、119,83,36,47,()
A、-37
B、-11
C、11
D、37
【答案】:答案:B
解析:119=83+36,83=36+47,即所填數字為36-47=-11。故選B。132、某小區有40%的住戶訂閱日報,有15%的住戶同時訂閱日報和時報,至少有75%的住戶至少訂閱兩種報紙中的一種,問訂閱時報的比例至少為多少?()
A、35%
B、50%
C、55%
D、60%
【答案】:答案:B
解析:設訂閱時報的住戶為x,至少訂閱一種報紙的人數為40%+x-15%。由至少75%的住戶至少訂閱兩種報紙中的一種得,40%+x-15%≥75%,解得x≥50%。故選B。133、6,21,43,72,()
A、84
B、96
C、108
D、112
【答案】:答案:C
解析:依次將相鄰兩個數中后一個數減去前一個數得15,22,29,構成公差為7的等差數列,即所填數字為72+29+7=108。故選C。134、118,199,226,(),238
A、228
B、230
C、232
D、235
【答案】:答案:D
解析:相鄰兩項后一項減前一項,199-118=81,226-199=27,235-226=9,238-235=3,是公比為的等比數列,即所填數字為238-3=226+9=235。故選D。135、2,1,2/3,1/2,()
A、3/4
B、1/4
C、2/5
D、5/6
【答案】:答案:C
解析:數列可化為4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后項為4/10=2/5。故選C。136、甲、乙、丙、丁四人開展羽毛球比賽,首輪每人需和另外3人各比1場,獲勝2場及以上者進入下一輪,否則淘汰。甲勝乙、丙、丁的概率分別為70%、50%、40%,問甲首輪遭淘汰的概率是多少?()
A、42.5%
B、45%
C、47.5%
D、48%
【答案】:答案:B
解析:獲勝2場及以上者進入下一輪,甲首輪遭淘汰,則甲輸了2場或者3場。分別枚舉如下:(1)甲輸三場的概率為30%×50%×60%=9%;(2)甲輸兩場有三種可能:①贏乙輸丙丁,概率為70%×50%×60%=21%;②贏丙輸乙丁,概率為30%×50%×60%=9%;③贏丁輸乙丙,概率為30%×50%×40%=6%。甲首輪遭淘汰的概率為9%+21%+9%+6%=45%。故選B。137、學校舉行象棋比賽,共有甲、乙、丙、丁4支隊。規定每支隊都要和另外3支隊各比賽一場,勝得3分,敗得0分,平雙方各得1分。已知:(1)這4支隊三場比賽的總得分為4個連續的奇數;(2)乙隊總得分排在第一;(3)丁隊恰有兩場同對方打成平局,其中有一場是與丙隊打成平局的。問丙隊得幾分?()
A、1分
B、3分
C、5分
D、7分
【答案】:答案:A
解析:每支隊均比賽3場,因此最高分不超過9分,又知總得分為4個連續的奇數,因此得分有3、5、7、9和1、3、5、7兩種情況。若最高分為9分,那么排名第二的隊最多贏現場得6分,不可能得7分,不符合題意,故乙隊得7分,即2勝1平。由條件(3)知,丁隊恰有兩場同對方打成平局,積分2分,為偶數,故另一場只能為勝,共得5分。由此可知,丙隊得分為1或3分。由于丁隊一場未敗,故乙隊獲勝的兩場只能是甲隊和丙隊。目前已知丙隊戰兩場,一負一平,積1分,另一場無論是勝或平,積分均為偶數,故這一場只能為負,總積分為1分。故選A。138、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,奇數項是2,偶數項構成公差為1的等差數列,即所填數字為6+(-1)=5。故選B。139、-24,3,30,219,()
A、289
B、346
C、628
D、732
【答案】:答案:D
解析:-24=(-3)3+3,3=03+3,30=33+3,219=63+3,即所填數字為93+3=732。故選D。140、7.1,8.6,14.2,16.12,28.4,()
A、32.24
B、30.4
C、32.4
D、30.24
【答案】:答案:A
解析:奇數項和偶數項間隔來看,整數部分和小數部分分別構成公比為2的等比數列。故選A。141、有一個五位數,左邊的三位數比右邊的兩位數的4倍還多4,如果把右邊兩位數移到最前面,新的五位數比原來的2倍還多11122,則原來的五位數是()。
A、18044
B、24059
C、27267
D、30074
【答案】:答案:B
解析:多位數問題考慮用代入排除法解題。代入A選項,180=44×4+4,但44180≠18044×2+11122,不符合題意,排除;代入B選項,240=59×4+4,59240=24059×2+11122,符合題意,正確。故選B。142、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,為奇數項是2偶數項為公差為1的等差數列,即所填數字為6+(-1)=5。故選B。143、一旅行團共有50位游客到某地旅游,去A景點的游客有35位,去B景點的游客有32位,去C景點的游客有27位,去A、B景點的游客有20位,去B、C景點的游客有15位,三個景點都去的游客有8位,有2位游客去完一個景點后先行離團,還有1位游客三
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 超市采購年度工作總結
- DB43-T 2857-2023‘金絲皇菊’栽培技術規程
- 人教版七年級下期末專題復習專題四 實數期末提升卷(含解析)
- 眼內炎護理查房
- 肛癰的護理方案
- 戰術威力測試題及答案
- 人教版部編版七年級語文下冊阿長與山海經
- 品德教育小班課件
- 腫瘤專科護士職業發展路徑規劃
- java中web面試題及答案
- 小學數學練習設計的有效性研究結題報告
- 汕頭市龍湖區2021年教師招聘《教育公共知識》試題及答案
- 浙江溫州十校2023至2024學年高二下學期6月期末聯考化學試題附參考答案(解析)
- 語文-山東省淄博市2023-2024學年高二下學期7月期末教學質量檢測試題和答案
- 湖南省婁底市漣源市2023-2024學年六年級下學期6月期末英語試題
- 上海市徐匯區市級名校2025屆物理高一第二學期期末考試模擬試題含解析
- 天一大聯盟2024屆高一數學第二學期期末統考試題含解析
- 【語文】西安外國語大學附屬小學(雁塔區)小學五年級下冊期末試卷(含答案)
- 小學數學“組題”設計分析 論文
- 附件16:地下室燈帶臨時照明系統方案
- 中央空調維護保養服務投標方案(技術標)
評論
0/150
提交評論