




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
公務員行政職業能力測試數量關系試題第一部分單選題(200題)1、12,23,35,47,511,()
A、613
B、612
C、611
D、610
【答案】:答案:A
解析:數位數列,各項首位數字“1,2,3,4,5,(6)”構成等差數列,其余數字“2,3,5,7,11,(13)”構成質數數列。因此,未知項為613。故選A。2、7,7,16,42,107,()
A、274
B、173
C、327
D、231
【答案】:答案:D
解析:做一次差后得到數列:13-1,23+1,33-1,43+1,53-1。故選D。3、A地到B地的道路是下坡路。小周早上6:00從A地出發勻速騎車前往B地,7:00時到達兩地正中間的C地。到達B地后,小周立即勻速騎車返回,在10:00時又途經C地。此后小周的速度在此前速度的基礎上增加1米/秒。最后在11:30回到A地。問A、B兩地間的距離在以下哪個范圍內?
A.40~50公里
B.大于50公里
C.小于30公里
D.30~40公里
【答案】:答案:A
解析:設小周下坡速度為,上坡速度為。根據條件分析可列下表:在上坡階段B→C=C→A,可得,解得=3m/s,根據1m/s=3600m/h,因此。故正確答案為A。4、甲、乙兩位村民去縣城A商店買東西,他們同時在村口出發,甲騎車而乙步行,但他們又同時到達A商店。途中甲休息的時間是乙步行時間的5/6,而乙休息的時間是甲騎車時間的1/2,則甲、乙途中休息的時間比是()。
A、4:1
B、5:1
C、5:2
D、6:1
【答案】:答案:B
解析:設乙步行時間為6x,甲騎車時間為2y,則甲休息的時間為5x,乙休息的時間為y,則由“他們同時在村口出發,甲騎車而乙步行,但他們又同時到達A商店”可得:2y+5x=6x+y,解得x:y=1:1。因此,甲、乙途中休息的時間比是5x:y=5:1。故選B。5、145,120,101,80,65,()
A、48
B、49
C、50
D、51
【答案】:答案:A
解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇數項,每項等于首項為12,公差為-2的平方加1;偶數項,每項等于首項為11,公差為-2的平方減1,即所填數字為72-1=48。故選A。6、學校舉行象棋比賽,共有甲、乙、丙、丁4支隊。規定每支隊都要和另外3支隊各比賽一場,勝得3分,敗得0分,平雙方各得1分。已知:(1)這4支隊三場比賽的總得分為4個連續的奇數;(2)乙隊總得分排在第一;(3)丁隊恰有兩場同對方打成平局,其中有一場是與丙隊打成平局的。問丙隊得幾分?()
A、1分
B、3分
C、5分
D、7分
【答案】:答案:A
解析:每支隊均比賽3場,因此最高分不超過9分,又知總得分為4個連續的奇數,因此得分有3、5、7、9和1、3、5、7兩種情況。若最高分為9分,那么排名第二的隊最多贏現場得6分,不可能得7分,不符合題意,故乙隊得7分,即2勝1平。由條件(3)知,丁隊恰有兩場同對方打成平局,積分2分,為偶數,故另一場只能為勝,共得5分。由此可知,丙隊得分為1或3分。由于丁隊一場未敗,故乙隊獲勝的兩場只能是甲隊和丙隊。目前已知丙隊戰兩場,一負一平,積1分,另一場無論是勝或平,積分均為偶數,故這一場只能為負,總積分為1分。故選A。7、2,3,6,18,108,()
A、1944
B、1620
C、1296
D、1728
【答案】:答案:A
解析:2×3=6,3×6=18,6×18=108,……前兩項相乘等于下一項,則所求項為18×108,尾數為4。故選A。8、某樓盤的地下停車位,第一次開盤時平均價格為15萬元/個;第二次開盤時,車位的銷售量增加了一倍、銷售額增加了60%。那么,第二次開盤的車位平均價格為()。
A、10萬元/個
B、11萬元/個
C、12萬元/個
D、13萬元/個
【答案】:答案:C
解析:銷售額=平均價格×銷售量,已知第一次開盤平均價格為15萬元/個,賦銷售量為1,則銷售額為15萬。第二次開盤時,銷售量增加了一倍,即為2,銷售額增加了60%,得銷售額為15×(1+60%)=24(萬元),故第二次開盤平均價格為24÷2=12(萬元/個)。故選C。9、0,1,3,10,()
A、101
B、102
C、103
D、104
【答案】:答案:B
解析:思路一:0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102。思路二:0(第一項)2+1=1(第二項)12+2=332+1=10102+2=102,其中所加的數呈1,2,1,2規律。思路三:各項除以3,取余數=>0,1,0,1,0,奇數項都能被3整除,偶數項除3余1。故選B。10、1,1,2,6,30,240,()
A、1200
B、1800
C、2400
D、3120
【答案】:答案:D
解析:1*2=2,2*3=6,6*5=30,30*8=240,后面除以前面的商是斐波那契數列2、3、5、8,即后一項是前面2項的和,8后面是13,240后面應該是240*13=3120。故選D。11、某一學校有500人,其中選修數學的有359人,選修文學的有408人,那么兩種課程都選的學生至少有多少?()
A、165人
B、203人
C、267人
D、199人
【答案】:答案:C
解析:設至少有x人兩種課程都選,則359-x+408-x+x≤500,解得x≥267,則兩種課程都選的學生至少有267人。故選C。12、有蘋果若干個,若把其換成桔子,則多換5個;若把其換成菠蘿,則少掉7個,已知每個桔子4角9分錢,每個菠蘿7角錢,每個蘋果的單價是多少?()
A、5角
B、5角8分
C、5角6分
D、5角4分
【答案】:答案:C
解析:此題可理解為:把蘋果全部賣掉,得到錢若干,若用這些錢買成同樣數量的桔子,則剩下49×5=245分,若用這些錢買成同樣數量的菠蘿,則缺少70×7=490分,所以蘋果個數=(245+490)÷(70-49)=35個,蘋果總價=49×35+49×5=1960分,每個蘋果單價=1960÷35=56分=5角6分。故選C。13、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故選C。14、-2,1,31,70,112,()
A、154
B、155
C、256
D、280
【答案】:答案:B
解析:依次將相鄰兩項做差得3、30、39、42,再次做差得27、9、3,是公比為1/3的等比數列,即所填數字為(3÷3)+42+112=155。故選B。15、1,6,36,216,()
A、1296
B、1297
C、1299
D、1230
【答案】:答案:A
解析:公比為6的等比數列。故選A。16、84,12,48,30,39,()
A、23
B、36.5
C、34.5
D、43
【答案】:答案:C
解析:依次將相鄰兩個數中前一個數減去后一個數得72,-36,18,-9,構成公比為-0.5的等比數列,即所填數字為39-4.5=34.5。故選C。17、1/5,1/3,3/7,1/2,()
A、5/9
B、1/6
C、6
D、3/5
【答案】:答案:A
解析:1/3寫成2/6,1/2寫成4/8,分子分母均是公差為1的等差數列。故選A。18、21,59,1117,2325,(),9541
A、3129
B、4733
C、6833
D、8233
【答案】:答案:B
解析:原數列各項可作如下拆分:[2|1],[5|9],[11|17],[23|25],[47|33],[95|41]。其中前半部分數字作差后構成等比數列,后半部分作差后構成等差數列。因此未知項為4733。故選B。19、2,2,3,4,9,32,()
A、129
B、215
C、257
D、283
【答案】:答案:D
解析:2×2-1=3,3×2-2=4,4×3-3=9,9×4-4=32,第n+2項=第n項×第(n+1)項-n(n=1,2,…),即所填數字為32×9-5=283。故選D。20、甲、乙、丙、丁四人開展羽毛球比賽,首輪每人需和另外3人各比1場,獲勝2場及以上者進入下一輪,否則淘汰。甲勝乙、丙、丁的概率分別為70%、50%、40%,問甲首輪遭淘汰的概率是多少?()
A、42.5%
B、45%
C、47.5%
D、48%
【答案】:答案:B
解析:獲勝2場及以上者進入下一輪,甲首輪遭淘汰,則甲輸了2場或者3場。分別枚舉如下:(1)甲輸三場的概率為30%×50%×60%=9%;(2)甲輸兩場有三種可能:①贏乙輸丙丁,概率為70%×50%×60%=21%;②贏丙輸乙丁,概率為30%×50%×60%=9%;③贏丁輸乙丙,概率為30%×50%×40%=6%。甲首輪遭淘汰的概率為9%+21%+9%+6%=45%。故選B。21、甲和乙兩個公司2014年的營業額相同。2015年乙公司受店鋪改造工程影響,營業額比上年下降300萬元。而甲公司則引入電商業務,營業額比上年增長600萬元,正好是乙公司2015年營業額的3倍。則2014年兩家公司的營業額之和為多少萬元?()
A.900
B.1200
C.1500
D.1800
【答案】:答案:C
解析:設2014年兩家公司營業額為x萬元,由題意可得萬元,則2014年兩家公司營業額為故正確答案為C。22、1,10,3,5,()
A、4
B、9
C、13
D、15
【答案】:答案:C
解析:把每項變成漢字為一、十、三、五、十三的筆畫數1,2,3,4,5等差。故選C。23、11,34,75,(),235
A、138
B、139
C、140
D、14
【答案】:答案:C
解析:思路一:11=23+3;34=33+7;75=43+11;140=53+15;235=63+19其中2,3,4,5,6等差;3,7,11,15,19等差。思路二:二級等差。故選C。24、1,10,3,5,()
A、4
B、9
C、13
D、15
【答案】:答案:C
解析:把每項變成漢字為一、十、三、五、十三的筆畫數1,2,3,4,5等差。故選C。25、1,2,6,30,210,()
A、1890
B、2310
C、2520
D、2730
【答案】:答案:B
解析:2÷1=2,6÷2=3,30÷6=5,210÷30=7,相鄰兩項后一項除以前一項的商構成連續的質數列,即所填數字為210×11=2310。故選B。26、25與一個三位數相乘個位是0,與這個三位數相加有且只有一次進位,像這樣的三位數總共有多少個? ()
A、48
B、126
C、174
D、180
【答案】:答案:C
解析:因為25與一個三位數相乘個位是0,所以這個三位數個位上的數是0、2、4、6、8。又因為與這個三位數相加有且只有一次進位,所以當個位是0、2、4時,十位必須是8或9,百位是1-8八個數都可以,這種情況有48(8乘2乘3等于48)個數滿足條件;當個位是6或8時,十位可以是0、1、2、3、4、5、6七個數,百位是1-9九個數,這種情況有126(9乘7乘2等于126)個數滿足條件;終上所述一共有174(48+126=174)個,即:像這樣的三位數總共有174個。故選C。27、某年的10月里有5個星期六,4個星期日,則這年的10月1日是?()
A、星期一
B、星期二
C、星期三
D、星期四
【答案】:答案:D
解析:10月有31天,因為有5個星期六,4個星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故選D。28、假設地球上新生成的資源的增長速度是一定的,照此推算,地球上的資源可供110億人生活90年,或者可供90億人生活210年。為了使人類能夠不斷繁衍,那么地球最多能養活多少億人?()
A、70
B、75
C、80
D、100
【答案】:答案:B
解析:設地球的原始資源可供x億人生存一年,每年增長的資源可供y億人生存一年,即x+90y=90×110,x+210y=210×90,兩式聯立得y=75,為了使人類能夠不斷繁衍,那么地球最多能養活75億人。故選B。29、甲、乙二人現在的年齡之和是一個完全平方數。7年前,他們各自的年齡都是完全平方數。再過多少年,他們的年齡之和又是完全平方數?()
A、20
B、18
C、16
D、9
【答案】:答案:B
解析:設七年前甲、乙的年齡分別為x、y歲,則七年后兩人的年齡和為(x+7)+(y+7)=x+y+14,根據題意x、y、x+y+14均為完全平方數。100以內的平方數有1、4、9、16、25、36、49、64、81、100,其中1+49+14=64,1、49、64均為完全平方數,則七年前甲1歲,乙49歲,現在甲為8歲,乙為56歲,年齡和為64,甲乙年齡和為偶數,下一個平方數為偶數的是100,需要再過(100-64)÷2=18年。故選B。30、1,7,8,57,()
A、123
B、122
C、121
D、120
【答案】:答案:C
解析:12+7=8,72+8=57,82+57=121。故選C。31、7,9,-1,5,()
A、3
B、-3
C、2
D、-2
【答案】:答案:B
解析:第三項=(第一項-第二項)/2=>-1=(7-9)/25=(9-(-1))/2-3=(-1-5)/2。故選B。32、0,4,18,(),100
A、48
B、58
C、50
D、38
【答案】:答案:A
解析:思路一:0、4、18、48、100=>作差=>4、14、30、52=>作差=>10、16、22等差數列。思路二:13-12=0;23-22=4;33-32=18;43-42=48;53-52=100。思路三:0×1=0;1×4=4;2×9=18;3×16=48;4×25=100。思路四:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100可以發現:0,2,6,(12),20依次相差2,4,(6),8。思路五:0=12×0;4=22×1;18=32×2;()=X2×Y;100=52×4所以()=42×3。33、-1,6,25,62,()
A、123
B、87
C、150
D、109
【答案】:答案:A
解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故選A。34、某人租下一店面準備賣服裝,房租每月1萬元,重新裝修花費10萬元。從租下店面到開始營業花費3個月時間。開始營業后第一個月,扣除所有費用后的純利潤為3萬元。如每月純利潤都比上月增加2000元而成本不變,問該店在租下店面后第幾個月內收回投資?()
A、7
B、8
C、9
D、10
【答案】:答案:A
解析:由題意可得租下店面前3個月成本為1×3+10=13(萬元),租下店面第4個月開始營業,營業后各月獲得的純利潤構成首項為3萬元、公差為0.2萬元的等差數列:3萬元、3.2萬元、3.4萬元、3.6萬元。由3+3.2+3.4+3.6=13.2>13,即第7個月收回投資。故選A。35、將所有由1、2、3、4組成且沒有重復數字的四位數,按從小到大的順序排列,則排在第12位的四位數是()。
A、3124
B、2341
C、2431
D、3142
【答案】:答案:C
解析:當千位數字是1時有=6種四位數,當千位數字是2時也有=6種四位數,因此排在第12位的就是千位數字為2的最大四位數,即2431。故選C。36、1,2,3,6,12,24,()
A、48
B、45
C、36
D、32
【答案】:答案:A
解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N項=第N-1項+…+第一項,即所填數字為1+2+3+6+12+24=48。故選A。37、從A地到B地為上坡路。自行車選手從A地出發按A-B-A-B的路線行進,全程平均速度為從B地出發,按B-A-B-A的路線行進的全程平均速度的4/5,如自行車選手在上坡路與下坡路上分別以固定速度勻速騎行,問他上坡的速度是下坡速度的()。
A、1/2
B、1/3
C、2/3
D、3/5
【答案】:答案:A
解析:S=VT,當S一定的時候,VT成反比,兩次行程的平均速度之比是4:5,故兩次行程所用時間之比T1:T2=5:4。設一個下坡的時間是1,一個上坡的時間是n,則上坡速度是下坡速度的1/n。A-B-A-B的過程經歷了2個上坡和1個下坡,則T1=2n+1;B-A-B-A的過程經歷了2個下坡和1個上坡,則T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故選A。38、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,奇數項是2,偶數項構成公差為1的等差數列,即所填數字為6+(-1)=5。故選B。39、4,8,28,216,()
A、6020
B、2160
C、4200
D、4124
【答案】:答案:A
解析:4×(8-1)=28,8×(28-1)=216,即所填數字為28×(216-1)=6020。故選A。40、2,3,5,7,()
A、8
B、9
C、11
D、12
【答案】:答案:C
解析:2,3,5,7,為連續的質數數列,7后面質數為11,則所求項為11。故選C。41、某城市居民用水價格為:每戶每月不超過5噸的部分按4元/噸收??;超過5噸不超過10噸的部分按6元/噸收??;超過10噸的部分按8元/噸收取。某戶居民兩個月共交水費108元,則該戶居民這兩個月用水總量最多為多少噸?()
A、17.25
B、21
C、21.33
D、24
【答案】:答案:B
解析:總費用一定,要使兩個月的用水總量最多,需盡量使用低價水。先將兩個月4元/噸的額度用完,花費4×5×2=40(元);再將6元/噸的額度用完,花費6×5×2=60(元)。由兩個月共交水費108元可知,還剩108-40-60=8(元),可購買1噸單價為8元/噸的水。該戶居民這兩個月用水總量最多為5×2+5×2+1=21(噸)。故選B。42、一艘輪船從甲地到乙地每小時航行30千米,然后按原路返回,若想往返的平均速度為每小時40千米,則返回時每小時航行()千米。
A、80
B、75
C、60
D、96
【答案】:答案:C
解析:設甲乙兩地的距離為1,則輪船從甲地到乙地所用的時間為1/30,如果往返的平均速度為40千米,則往返一次所用的時間為2/40,那么從乙地返回甲地所用時間為2/40-1/30=1/60,所以返回時的速度為每小時1/(1/60)=60千米。故選C。43、一個四邊形廣場,它的四邊長分別是60米、72米、96米、84米,現在四邊上植樹,四角需種樹,而且每兩棵樹的間隔相等,那么,至少要種多少棵樹?()
A、22
B、25
C、26
D、30
【答案】:答案:C
解析:根據四角需種樹,且每兩棵樹的間隔相等可知,間隔距離應為四邊邊長的公約數;要使棵樹至少,則間隔距離要盡量最大,公約數最大為12(60、72、96、84的最大公約數)。故棵數=段數=長度÷間距=(60+72+84+96)÷12=26(棵)。故選C。44、在一次知識競賽中,甲、乙兩單位平均分為85分,甲單位得分比乙單位高10分,則乙單位得分為()分。
A、88
B、85
C、80
D、75
【答案】:答案:C
解析:根據“甲、乙平均分為85分”,可得總分為85×2=170(分)。設乙得分為x,那么甲得分為x+10,由題意有x+x+10=170,解得x=80。故選C。45、某高速公路收費站對過往車輛的收費標準是:大型車30元/輛、中型車15元/輛、小型車10元/輛。某天,通過收費站的大型車與中型車的數量比是5∶6,中型車與小型車的數量比是4∶11,小型車的通行費總數比大型車的多270元,這天的收費總額是()。
A、7280元
B、7290元
C、7300元
D、7350元
【答案】:答案:B
解析:大、中、小型車的數量比為10∶12∶33。以10輛大型車、12輛中型車、33輛小型車為一組。每組小型車收費比大型車多33×10-10×30=30元。實際多270元,說明共通過了270÷30=9組。每組收費10×30+12×15+33×10=810元,收費總額為9×810=7290元。故選B。46、2,5,9,19,37,75,()
A、140
B、142
C、146
D、149
【答案】:答案:C
解析:方法一:2×2+1=5,5×2-1=9,9×2+1=19,19×2-1=37,37×2+1=75,奇數項,每項乘以2加上1等于后一項;偶數項,每項乘以2減去1等于后一項,即所填數字為75×2-1=149。方法二:2×2+5=9,5×2+9=19,9×2+19=37,19×2+37=75,第三項=第一項×2+第二項,即所填數字為37×2+75=149。故選C。47、145,120,101,80,65,()
A、48
B、49
C、50
D、51
【答案】:答案:A
解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇數項,每項等于首項為12,公差為-2的平方加1;偶數項,每項等于首項為11,公差為-2的平方減1,即所填數字為72-1=48。故選A。48、2,6,13,39,15,45,23,()
A、46
B、66
C、68
D、69
【答案】:答案:D
解析:6=2×3,39=13×3,45=15×3。兩個數為一組,每組中的第二個數是第一個數的三倍,即所填數字為23×3=69。故選D。49、-3,-2,1,6,()
A、8
B、11
C、13
D、15
【答案】:答案:C
解析:相鄰兩項之差依次為1,3,5,(7),應填入13。故選C。50、8,6,-4,-54,()
A、-118
B、-192
C、-320
D、-304
【答案】:答案:D
解析:依次將相鄰兩個數中后一個數減去前一個數得-2,-10,-50,構成公比為5的等比數列,即所填數字為-54+(-250)=-304。故選D。51、某種茶葉原價30元一包,為了促銷,降低了價格,銷量增加了二倍,收入增加了五分之三,則一包茶葉降價()元。
A、12
B、14
C、13
D、11
【答案】:答案:B
解析:設原來茶葉的銷量為1,那么現在銷量為3。原來收入為30元,現在收入為30×(1+3/5)=48元,每包茶葉為48÷3=16元,降價30-16=14元。故選B。52、一個四邊形廣場,它的四邊長分別是60米、72米、96米、84米,現在四邊上植樹,四角需種樹,而且每兩棵樹的間隔相等,那么,至少要種多少棵樹?()
A、22
B、25
C、26
D、30
【答案】:答案:C
解析:根據四角需種樹,且每兩棵樹的間隔相等可知,間隔距離應為四邊邊長的公約數;要使棵樹至少,則間隔距離要盡量最大,公約數最大為12(60、72、96、84的最大公約數)。故棵數=段數=長度÷間距=(60+72+84+96)÷12=26(棵)。故選C。53、將17拆分成若干個自然數的和,這些自然數的乘積的最大值是多少?()
A、256
B、486
C、556
D、376
【答案】:答案:B
解析:若把一個整數拆分成若干個自然數之和,有大于4的數,則把大于4的這個數再分成一個2與另一個大于2的自然數之和,則這個2與大于2的這個數的乘積肯定比這個大于4的數更大。另外,如果拆分的數中含有1,則對乘積增大沒有貢獻,因此不能考慮。因此,要使加數之積最大,加數只能是2和3。但是,若加數中含有3個2,則不如將它換成2個3。因為2×2×2=8,而3×3=9。故拆分出的自然數中,至多含有兩個2,而其余都是3。故將17拆分為17=3+3+3+3+3+2時,其乘積最大,最大值為243×2=486。故選B。54、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故選C。55、5,12,24,36,52,()
A、58
B、62
C、68
D、72
【答案】:答案:C
解析:5=2+3,12=5+7,24=11+13,36=17+19,52=23+29,全是從小到大的質數和,所以下一個是31+37=68。故選C。56、要將濃度分別為20%和5%的A、B兩種食鹽水混合配成濃度為15%的食鹽水900克,問5%的食鹽水需要多少克?()
A、250
B、285
C、300
D、325
【答案】:答案:C
解析:設需要5%的食鹽水x克,則需要20%的食鹽水(900-x)克;根據混合后濃度為15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故選C。57、1,10,2,(),3,8,4,7,5,6
A、6
B、7
C、8
D、9
【答案】:答案:D
解析:間隔組合數列,奇數項1、2、3、4、5和偶數項10、(9)、8、7、6都為等差數列。故選D。58、130,68,30,(),2
A、11
B、12
C、10
D、9
【答案】:答案:C
解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故選C。59、依法納稅是公民的義務,按規定,全月工資薪金所得不超過800元的部分不必納稅,超過800元的部分,按下列分段累進計算稅款,某人5月份應交納此項稅款26.78元,則他的當月工資薪金所得介于()。
A、800~900
B、900~1200
C、1200~1500
D、1500~2800
【答案】:答案:C
解析:根據表格:工資中800~1300的部分,需納稅500×5%=25(元);還剩稅款26.78-25=1.78(元),即在1300元以上的部分為(元),則他當月工資薪金為1300+17.8=1317.8(元)。故選C。60、玉米的正常市場價格為每公斤1.86元到2.18元,近期某地玉米價格漲至每公斤2.68元。經測算,向市場每投放儲備玉米100噸,每公斤玉米價格下降0.05元。為穩定玉米價格,向該地投放儲備玉米的數量不能超過()。
A、800噸
B、1080噸
C、1360噸
D、1640噸
【答案】:答案:D
解析:要穩定玉米價格,玉米的價格必須調整至正常區間。所以最低下降為每公斤1.86元,即下降了2.68-1.86=0.82(元)。因為每投放100噸,價格下降0.05元,所以投放玉米的數量不能超過0.82÷0.05×100=1640(噸)。故選D。61、有一個五位數,左邊的三位數比右邊的兩位數的4倍還多4,如果把右邊兩位數移到最前面,新的五位數比原來的2倍還多11122,則原來的五位數是()。
A、18044
B、24059
C、27267
D、30074
【答案】:答案:B
解析:多位數問題考慮用代入排除法解題。代入A選項,180=44×4+4,但44180≠18044×2+11122,不符合題意,排除;代入B選項,240=59×4+4,59240=24059×2+11122,符合題意,正確。故選B。62、鋼鐵廠某年總產量的1/6為型鋼類,1/7為鋼板類,鋼管類的產量正好是型鋼和鋼板產量之差的14倍,而鋼絲的產量正好是鋼管和型鋼產量之和的一半,而其它產品共為3萬噸。問該鋼鐵廠當年的產量為多少萬噸?()
A、48
B、42
C、36
D、28
【答案】:答案:D
解析:假設總產量為,則型鋼類產量為,鋼板類產量為,鋼管類為,鋼絲的產量為,則,解得萬噸,則總產量萬噸。故正確答案為D。63、小張購買了2個蘋果、3根香蕉、4個面包和5塊蛋糕,共消費58元。如果四種商品的單價都是正整數且各不相同,則每塊蛋糕的價格最高可能為多少元?()
A、5
B、6
C、7
D、8
【答案】:答案:D
解析:設蘋果、香蕉、面包、蛋糕的單價分別為x、y、z、w,根據共消費58元,得2x+3y+4z+5w=58。代入排除,根據最高,優先從值最大的選項代入。D選項,當w=8時,可得2x+3y+4z=18,由2x、4z、18均為偶數,則3y為偶數,即y為偶數且小于6。當y=2,有2x+4z=12,即x+2z=6,均為正整數且各不相同,若z=1,則x=4,此時滿足題意。故選D。64、某制衣廠接受一批服裝訂貨任務,按計劃天數進行生產,如果每天平均生產20套服裝,就比訂貨任務少生產100套;如果每天生產23套服裝,就可超過訂貨任務20套。那么,這批服裝的訂貨任務是多少套?()
A、760
B、1120
C、900
D、850
【答案】:答案:C
解析:由題意每天生產多出3套,總共就會多生產出120,那么計劃的天數為40天,所以這批服裝為20×40+100=900(套)。故選C。65、7.1,8.6,14.2,16.12,28.4,()
A、32.24
B、30.4
C、32.4
D、30.24
【答案】:答案:A
解析:奇數項和偶數項間隔來看,整數部分和小數部分分別構成公比為2的等比數列。故選A。66、1,10,26,75,196,()
A、380
B、425
C、520
D、612
【答案】:答案:C
解析:第一步相差,得到9,16,49,121,明顯是平方,分別是3,4,7,11的平方,發現都是第一項+第二項=第三項,所以下一個差值是(7+11)的平方,也就是18的平方,而下個數就應該是196+18的平方等于520。故選C。67、一旅行團共有50位游客到某地旅游,去A景點的游客有35位,去B景點的游客有32位,去C景點的游客有27位,去A、B景點的游客有20位,去B、C景點的游客有15位,三個景點都去的游客有8位,有2位游客去完一個景點后先行離團,還有1位游客三個景點都沒去。那么,50位游客中有多少位恰好去了兩個景點?()
A、29
B、31
C、35
D、37
【答案】:答案:A
解析:設去兩個景點的人數為y,根據三集合非標準型公式可得:35+32+27-y-2×8=50-1,解得y=29。故選A。68、12,23,34,45,56,()
A、66
B、67
C、68
D、69
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數,構成公差為11的等差數列,即所填的數字為56+11=67。故選B。69、某城市居民用水價格為:每戶每月不超過5噸的部分按4元/噸收??;超過5噸不超過10噸的部分按6元/噸收取;超過10噸的部分按8元/噸收取。某戶居民兩個月共交水費108元,則該戶居民這兩個月用水總量最多為多少噸?()
A、17.25
B、21
C、21.33
D、24
【答案】:答案:B
解析:總費用一定,要使兩個月的用水總量最多,需盡量使用低價水。先將兩個月4元/噸的額度用完,花費4×5×2=40(元);再將6元/噸的額度用完,花費6×5×2=60(元)。由兩個月共交水費108元可知,還剩108-40-60=8(元),可購買1噸單價為8元/噸的水。該戶居民這兩個月用水總量最多為5×2+5×2+1=21(噸)。故選B。70、[(9,6)42(7,7)][(7,3)40(6,4)][(8,2)()(3,2)]
A、30
B、32
C、34
D、36
【答案】:答案:A
解析:(9-6)×(7+7)=42,(7-3)×(6+4)=40,(8-2)×(3+2)=(30)。故選A。71、12,27,72,(),612
A、108
B、188
C、207
D、256
【答案】:答案:C
解析:(第一項-3)×3=第二項,(72-3)×3=(207),(207-3)×3=612。故選C。72、某雜志為每篇投稿文章安排兩位審稿人,若都不同意錄用則棄用;若都同意則錄用;若兩人意見不同,則安排第三位審稿人,并根據其意見錄用或棄用,如每位審稿人錄用某篇文章的概率都是60%,則該文章最終被錄用的概率是()。
A、36%
B、50.4%
C、60%
D、64.8%
【答案】:答案:D
解析:根據題意,該文章最終被錄用可分為以下兩種情況:(1)前兩位審稿人都同意,概率為0.6×0.6=0.36;(2)前兩位審稿人只有一人同意且第三位審稿人同意,概率為;故該文章最終被錄用的概率為0.36+0.288=0.648=64.8%。故選D。73、-7,0,1,2,9,()
A、42
B、18
C、24
D、28
【答案】:答案:D
解析:-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1。故選D。74、2,12,40,112,()
A、224
B、232
C、288
D、296
【答案】:答案:C
解析:原數列可以寫成1×2,3×4,5×8,7×16,前一個乘數數列為1,3,5,7,是等差數列,下一項是9,后一個乘數數列為2,4,8,16,是等比數列,下一項是32,所以原數列空缺項為9×32=288。故選C。75、某城市居民用水價格為:每戶每月不超過5噸的部分按4元/噸收??;超過5噸不超過10噸的部分按6元/噸收取;超過10噸的部分按8元/噸收取。某戶居民兩個月共交水費108元,則該戶居民這兩個月用水總量最多為多少噸?()
A、17.25
B、21
C、21.33
D、24
【答案】:答案:B
解析:總費用一定,要使兩個月的用水總量最多,需盡量使用低價水。先將兩個月4元/噸的額度用完,花費4×5×2=40(元);再將6元/噸的額度用完,花費6×5×2=60(元)。由兩個月共交水費108元可知,還剩108-40-60=8(元),可購買1噸單價為8元/噸的水。該戶居民這兩個月用水總量最多為5×2+5×2+1=21(噸)。故選B。76、在某企業,40%的員工有至少3年的工齡,16個員工有至少8年的工齡。如果90%的員工的工齡不足8年,則工齡至少3年但不足8年的員工有()人。
A、48
B、64
C、80
D、144
【答案】:答案:A
解析:由于不足8年工齡的員工占90%,則至少8年工齡的員工占1-90%=10%,可得員工總數為16÷10%=160(人),故工齡至少3年但不足8年的員工有160×40%-16=48(人)。故選A。77、有4堆木材,都堆成正三角形垛,層數分別為5,6,7,8層,那么共有木材()根。
A、110
B、100
C、120
D、130
【答案】:答案:B
解析:5層木材有1+2+3+4+5=15,6層木材有1+2+3+4+5+6=21,7層木材有1+2+3+4+5+6+7=28,8層木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故選B。78、1,7,8,57,()
A、123
B、122
C、121
D、120
【答案】:答案:C
解析:12+7=8,72+8=57,82+57=121。故選C。79、某城市居民用水價格為:每戶每月不超過5噸的部分按4元/噸收取;超過5噸不超過10噸的部分按6元/噸收??;超過10噸的部分按8元/噸收取。某戶居民兩個月共交水費108元,則該戶居民這兩個月用水總量最多為多少噸?()
A、17.25
B、21
C、21.33
D、24
【答案】:答案:B
解析:總費用一定,要使兩個月的用水總量最多,需盡量使用低價水。先將兩個月4元/噸的額度用完,花費4×5×2=40(元);再將6元/噸的額度用完,花費6×5×2=60(元)。由兩個月共交水費108元可知,還剩108-40-60=8(元),可購買1噸單價為8元/噸的水。該戶居民這兩個月用水總量最多為5×2+5×2+1=21(噸)。故選B。80、某校二年級全部共3個班的學生排隊.每排4人,5人或6人,最后一排都只有2人.這個學校二年級有()名學生。
A、120
B、122
C、121
D、123
【答案】:答案:B
解析:由題意知,學生數除以4、5、6均余2,由代入法可以得到,只有B項滿足條件。81、A、B、C三個試管中各盛有10克、20克、30克水,把某種濃度的鹽水10克倒入A中,充分混合后從A中取出10克倒入B中,再充分混合后從B中取出10克倒入C中,最后得到C中鹽水的濃度為0.5%。則開始倒入試管A中的鹽水濃度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含鹽量為(30+10)×0.5%=0.2克,即從B中取出的10克中含鹽0.2克,則B的濃度為0.2÷10=2%,進而求出B中含鹽量為(20+10)×2%=0.6克,即從A中取出的10克中含鹽0.6克,可得A的濃度為0.6÷10=6%,進一步得出A中含鹽量為(10+10)×6%=1.2克,故開始倒入A中的鹽水濃度為1.2÷10=12%。故選A。82、1,6,5,7,2,8,6,9,()
A、1
B、2
C、3
D、4
【答案】:答案:C
解析:本題為隔項遞推數列,存在關系:第三項=第二項-第一項,第五項=第四項-第三項,……因此未知項為9-6=3。故選C。83、-3,-2,5,24,61,()
A、122
B、156
C、240
D、348
【答案】:答案:A
解析:相鄰兩項逐差:因此,未知項=61+61=122。故選A。84、四人年齡為相鄰的自然數列且最年長者不超過30歲,四人年齡之乘積能被2700整除且不能被81整除。則四人中最年長者多少歲?()
A、30
B、29
C、28
D、27
【答案】:答案:C
解析:結合最年長者,優先從選項最大值代入:A選項:30×29×28×27,尾數只有一個0,不能被2700整除,排除;B選項:29×28×27×26,尾數不為0,不能被2700整除,排除;C選項:28×27×26×25=(4×7)×27×26×25,能被2700整除,不能被81整除,正確。故選C。85、某年的10月里有5個星期六,4個星期日,則這年的10月1日是?()
A、星期一
B、星期二
C、星期三
D、星期四
【答案】:答案:D
解析:10月有31天,因為有5個星期六,4個星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故選D。86、3,4,10,33,136,()
A、685
B、424
C、314
D、149
【答案】:答案:A
解析:4=(3+1)×1,10=(4+1)×2,33=(10+1)×3,136=(33+1)×4,an=(an-1+1)×(n-1)(n≥2),即所填數字應為(136+1)×5=685。故選A。87、某校二年級全部共3個班的學生排隊.每排4人,5人或6人,最后一排都只有2人.這個學校二年級有()名學生。
A、120
B、122
C、121
D、123
【答案】:答案:B
解析:由題意知,學生數除以4、5、6均余2,由代入法可以得到,只有B項滿足條件。88、A、B、C三個試管中各盛有10克、20克、30克水,把某種濃度的鹽水10克倒入A中,充分混合后從A中取出10克倒入B中,再充分混合后從B中取出10克倒入C中,最后得到C中鹽水的濃度為0.5%。則開始倒入試管A中的鹽水濃度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含鹽量為(30+10)×0.5%=0.2克,即從B中取出的10克中含鹽0.2克,則B的濃度為0.2÷10=2%,進而求出B中含鹽量為(20+10)×2%=0.6克,即從A中取出的10克中含鹽0.6克,可得A的濃度為0.6÷10=6%,進一步得出A中含鹽量為(10+10)×6%=1.2克,故開始倒入A中的鹽水濃度為1.2÷10=12%。故選A。89、某單位組織工會活動,30名員工自愿參加做游戲。游戲規則:按1~30號編號并報數,第一次報數后,單號全部站出來,然后每次余下的人中第一個開始站出來,隔一人站出來一個人。最后站出來的人給大家唱首歌。那么給大家唱歌的員工編號是()。
A、14
B、16
C、18
D、20
【答案】:答案:B
解析:第一次報數后,單號全部站出來,剩余號碼為2、4、6、8、10······30,均為2的倍數;每次余下的人中第一個開始站出來,隔一人站出來一個人,剩余號碼為4、8、12、16、20、24、28,均為4的倍數;再從余下的號碼中第一個人開始站出來,隔一個人站出來一個人,剩余號碼為8、16、24,均為8的倍數;重復上一次的步驟,剩余16號,為16的倍數。1—30中16的倍數只有16。故選B。90、某陶瓷公司要到某地推銷瓷器,公司與該地相距900千米。已知瓷器成本為每件4000元,每件瓷器運費為2.5元/千米。如果在運輸及銷售過程中瓷器的損耗為25%,那么該公司要想實現20%的利潤率,瓷器的零售價應是()元。
A、8000
B、8500
C、9600
D、1000
【答案】:答案:D
解析:以一件瓷器為例,1件瓷器成本為4000元,運費為2.5×900=2250元,則成本為4000+2250=6250元,要想實現20%的利潤率,應收入6250×(1+20%)=7500元;由于損耗,實際的銷售產品數量為1×(1-25%)=75%,所以實際零售價為7500÷75%=1000元。故選D。91、某飲料店有純果汁(即濃度為100%)10千克,濃度為30%的濃縮還原果汁20千克。若取純果汁、濃縮還原果汁各10千克倒入10千克純凈水中,再倒入10千克的濃縮還原果汁,則得到的果汁濃度為多少。()
A、40%
B、37.5%
C、35%
D、30%
【答案】:答案:A
解析:根據題干可得,一共倒入純果汁(即濃度為100%)10千克,純凈水10千克,濃度為30%的濃縮還原果汁20千克。可知最終溶液的量為10+10+20=40(千克),最終溶質為10+20×30%=16(千克)。則最終果汁濃度=16÷40×100%=40%。故選A。92、78,9,64,17,32,19,()
A、18
B、20
C、22
D、26
【答案】:答案:A
解析:兩兩相加=>87、73、81、49、51、37=>每項除以3,則余數為=>0、1、0、1、0、1。故選A。93、(1296-18)÷36的值是()。
A、20
B、35.5
C、19
D、36
【答案】:答案:B
解析:原式可轉化為1296÷36-18÷36=36-0.5=35.5。故選B。94、某樓盤的地下停車位,第一次開盤時平均價格為15萬元/個;第二次開盤時,車位的銷售量增加了一倍、銷售額增加了60%。那么,第二次開盤的車位平均價格為()。
A、10萬元/個
B、11萬元/個
C、12萬元/個
D、13萬元/個
【答案】:答案:C
解析:銷售額=平均價格×銷售量,已知第一次開盤平均價格為15萬元/個,賦銷售量為1,則銷售額為15萬。第二次開盤時,銷售量增加了一倍,即為2,銷售額增加了60%,得銷售額為15×(1+60%)=24(萬元),故第二次開盤平均價格為24÷2=12(萬元/個)。故選C。95、某水庫共有10個泄洪閘,當10個泄洪閘全部打開時,8小時可將水位由警戒水位降至安全水位;只打開6個泄洪閘時,這個過程為24個小時,如水庫每小時的入庫量穩定,問如果打開8個泄洪閘時,需要多少小時可將水位降至安全水位?()
A、10
B、12
C、14
D、16
【答案】:答案:B
解析:設水庫每小時的入庫量為x。根據題意可列方程(10-x)8=(6-x)24,解得x=4,故水庫警戒水位至安全水位的容量為(10-4)×8=48;設打開8個泄洪閘需t小時可將水位降至安全水位;則48=(8-4)t,解得t=12。故選B。96、-13,19,58,106,165,()
A、189
B、198
C、232
D、237
【答案】:答案:D
解析:二級等差。(即作差2次后,所得相同)。故選D。97、2,3,6,15,()
A、25
B、36
C、42
D、64
【答案】:答案:C
解析:相鄰兩項間做差。做差后得到的數為1,3,9;容易觀察出這是一個等比數列,所以做差數列的下一項為27,則答案為15+27=42。故選C。98、1/2,1,1,(),9/11,11/13
A、2
B、3
C、1
D、9
【答案】:答案:C
解析:1/2,1,1,(),9/11,11/13=>1/2,3/3,5/5,7/7,9/11,11/13=>分子1,3,5,7,9,11等差;分母2,3,5,7,11,13連續質數列。故選C。99、甲、乙二人現在的年齡之和是一個完全平方數。7年前,他們各自的年齡都是完全平方數。再過多少年,他們的年齡之和又是完全平方數?()
A、20
B、18
C、16
D、9
【答案】:答案:B
解析:設七年前甲、乙的年齡分別為x、y歲,則七年后兩人的年齡和為(x+7)+(y+7)=x+y+14,根據題意x、y、x+y+14均為完全平方數。100以內的平方數有1、4、9、16、25、36、49、64、81、100,其中1+49+14=64,1、49、64均為完全平方數,則七年前甲1歲,乙49歲,現在甲為8歲,乙為56歲,年齡和為64,甲乙年齡和為偶數,下一個平方數為偶數的是100,需要再過(100-64)÷2=18年。故選B。100、祖父今年65歲,3個孫子的年齡分別是15歲、13歲與9歲,問多少年后3個孫子的年齡之和等于祖父的年齡?()
A、23
B、14
C、25
D、16
【答案】:答案:B
解析:設n年后3個孫子的年齡之和等于祖父的年齡,可列方程:65+n=(15+n)+(13+n)+(9+n),解得n=14。故選B。101、1,2,3,6,12,24,()
A、48
B、45
C、36
D、32
【答案】:答案:A
解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N項=第N-1項+…+第一項,即所填數字為1+2+3+6+12+24=48。故選A。102、超市有一批酒需要入庫,單獨干這項工作,小明需要15小時,小軍需要18小時。如果小明和小軍一起干了5小時后,剩下的由小軍獨自完成,若這時小軍的效率提高40%,則還需要幾小時才能完成?()
A、5
B、17
C、12
D、11
【答案】:答案:A
解析:設總工作量為90,則小明的效率為6,小軍的效率為5。開始時兩人合作了5個小時,共完成工作量(6+5)×5=55,還剩90-55=35。這時小軍的效率為5×(1+40%)=7,剩下的工作小軍還需35÷7=5小時才能完成。故選A。103、-3,-2,5,24,61,()
A、122
B、156
C、240
D、348
【答案】:答案:A
解析:相鄰兩項逐差:因此,未知項=61+61=122。故選A。104、4,5,7,9,13,15,()
A、17
B、19
C、18
D、20
【答案】:答案:B
解析:各項減2后為質數列,故下一項為17+2=19。故選B。105、13,14,16,21,(),76
A、23
B、35
C、27
D、22
【答案】:答案:B
解析:相連兩項相減:1,2,5,();再減一次:1,3,9,27;()=14;21+14=35。故選B。106、2,3,10,23,()
A、35
B、42
C、68
D、79
【答案】:答案:B
解析:相鄰兩項后一項減前一項,3-2=1,10-3=7,13-10=13,42-23=19,是一個公差為6的等差數列,即所填數字為23+19=42。故選B。解析:設每個小長方形的長為x厘米、寬為y厘米,由題意可知,2x+(x+y)=88÷2,2x=3y,得x=12,y=8。即大長方形的面積為12×8×5=480平方厘米。故選C。107、118,199,226,(),238
A、228
B、230
C、232
D、235
【答案】:答案:D
解析:相鄰兩項后一項減前一項,199-118=81,226-199=27,235-226=9,238-235=3,是公比為的等比數列,即所填數字為238-3=226+9=235。故選D。108、甲、乙、丙三輛汽車分別從A地開往千里之外的B地。若乙比甲晚出發30分鐘,則乙出發后2小時追上甲;若丙比乙晚出發20分鐘,則丙出發后5小時追上乙。若甲出發10分鐘后乙出發,當乙追上甲時,丙才出發,則丙追上甲所需時間是()。
A、110分鐘
B、150分鐘
C、127分鐘
D、128分鐘
【答案】:答案:B
解析:設甲、乙、丙三輛汽車的速度分別為x、y、z。由于甲行駛30分鐘的路程,乙需要2小時才能追上,則30x=(y-x)×2×60,化簡得x∶y=4∶5。又因乙行駛20分鐘的路程,丙需要5小時才能追上,則20y=(z-y)×5×60,化簡得y∶z=15∶16。所以三輛汽車的速度x∶y∶z=12∶15∶16。賦值甲、乙、丙的速度分別為12、15、16,甲出發10分鐘后乙出發,則乙追上甲的時間為(分鐘),故丙出發時甲已經行駛10+40=50(分鐘),設丙追上甲所需時間是t分鐘,可得方程12×50=(16-12)×t,解得t=150。故選B。109、1,2,0,3,-1,4,()
A、-2
B、0
C、5
D、6
【答案】:答案:A
解析:奇數項1、0、-1、(-2)是公差為-1的等差數列;偶數項2、3、4是連續自然數。故選A。110、2,6,30,210,2310,()
A、30160
B、30030
C、40300
D、32160
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數除以前一個數得3,5,7,11,為一個質數數列,即所填數字為2310×13=30030。故選B。111、甲乙兩船從相距50千米的地方起航,船速不變。兩船在逆水中航行,甲航行100千米恰好趕上乙;如果兩船在順水中航行,那么甲追上乙需航行多遠?()
A、500千米
B、100~500千米
C、100千米
D、大于100千米
【答案】:答案:D
解析:不管是順水還是逆水,水速對兩船的影響是一樣的,影響追及時間產生的僅為兩船船速之差。因此無論逆水還是順水,追及時間相同,逆水時甲船追上乙船需航行100千米,而順水航行時速度大于逆水時的速度,航行距離應大于100千米。故選D。112、某制衣廠接受一批服裝訂貨任務,按計劃天數進行生產,如果每天平均生產20套服裝,就比訂貨任務少生產100套;如果每天生產23套服裝,就可超過訂貨任務20套。那么,這批服裝的訂貨任務是多少套?()
A、760
B、1120
C、900
D、850
【答案】:答案:C
解析:由題意每天生產多出3套,總共就會多生產出120,那么計劃的天數為40天,所以這批服裝為20×40+100=900(套)。故選C。113、a除以5余1,b除以5余4,如果3a>b,那么3a-b除以5余幾?()
A、1
B、2
C、3
D、4
【答案】:答案:D
解析:a除以5余1,假設a=6;b除以5余4,假設b=9,符合3a>b。故3a-b=18-9=9,9除以5余4。故選D。114、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故選C。115、水面上有三艘同向行駛的輪船,其中甲船的時速為63公里,乙、丙兩船的時速均為60公里,但由于故障,丙船每連續行駛30分鐘后必須停船2分鐘。早上10點,三船到達同一位置,問1小時后,甲、丙兩船最多相距多少公里?()
A、5
B、7
C、9
D、11
【答案】:答案:B
解析:1小時內,甲船行駛了63公里,丙船最多停車4分鐘,即行駛56分鐘,行駛路程為56公里。故最多相距7公里。故選B。116、水面上有三艘同向行駛的輪船,其中甲船的時速為63公里,乙、丙兩船的時速均為60公里,但由于故障,丙船每連續行駛30分鐘后必須停船2分鐘。早上10點,三船到達同一位置,問1小時后,甲、丙兩船最多相距多少公里?()
A、5
B、7
C、9
D、11
【答案】:答案:B
解析:1小時內,甲船行駛了63公里,丙船最多停車4分鐘,即行駛56分鐘,行駛路程為56公里。故最多相距7公里。故選B。117、2,3,6,15,()
A、25
B、36
C、42
D、64
【答案】:答案:C
解析:相鄰兩項間做差。做差后得到的數為1,3,9;容易觀察出這是一個等比數列,所以做差數列的下一項為27,則答案為15+27=42。故選C。118、一個人從家到公司,當他走到路程的一半的時候,速度下降了10%,問:他走完全程所用時間的前半段和后半段所走的路程比是()。
A、10:9
B、21:19
C、11:9
D、22:18
【答案】:答案:B
解析:設前半程速度為10,則后半程速度為9,路程總長為180,則前半程用時9,后半程用時10,總耗時19,一半為9.5。因此前半段時間走過的路程為90+9×(9.5-9)=94.5,后半段時間走過的路程為9×9.5=85.5。兩段路程之比為94.5:85.5=21:19。故選B。119、在某城市中,有60%的家庭訂閱某種日報,有85%的家庭有電視機。假定這兩個事件是獨立的,今隨機抽出一個家庭,所抽家庭既訂閱該種日報又有電視機的概率是()。
A、0.09
B、0.25
C、0.36
D、0.51
【答案】:答案:D
解析:由于是獨立重復試驗,故既訂閱該中日報又有電視機的概率是60%×85%=51%。故選D。120、某木場有甲,乙,丙三位木匠師傅生產桌椅,甲每天能生產12張書桌或13把椅子;乙每天能生產9張書桌或12把椅子,丙每天能生產9張書桌或15把椅子,現在書桌和椅子要配套生產(每套一張書桌一把椅子),則7天內這三位師傅最多可以生產桌椅()套。
A、116
B、129
C、132
D、142
【答案】:答案:B
解析:將甲、乙、丙三位木匠師傅生產桌椅的效率列表如下,分析可知,甲生產書桌的相對效率最高,丙生產椅子的相對效率最高,則安排甲7天全部生產書桌,丙7天全部生產椅子,乙協助甲丙完成。甲7天可生產桌子12×7=84(張),丙7天可生產椅子15×7=105(把)。設乙生產書桌x天,則生產椅子(7-x)天,當生產的書桌數與椅子數相同時,獲得套數最多,可列方程84+9x=105+12×(7-x),解得x=5,則乙可生產書桌9×5=45(張)。故7天內這三位師傅最多可以生產桌椅84+45=129(套)。故選B。121、145,120,101,80,65,()
A、48
B、49
C、50
D、51
【答案】:答案:A
解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇數項,每項等于首項為12,公差為-2的平方加1;偶數項,每項等于首項為11,公差為-2的平方減1,即所填數字為72-1=48。故選A。122、某校二年級全部共3個班的學生排隊.每排4人,5人或6人,最后一排都只有2人.這個學校二年級有()名學生。
A、120
B、122
C、121
D、123
【答案】:答案:B
解析:由題意知,學生數除以4、5、6均余2,由代入法可以得到,只有B項滿足條件。123、10,9,17,50,()
A、100
B、99
C、199
D、200
【答案】:答案:C
解析:10×1-1=9;9×2-1=17;17×3-1=50;50×4-1=199。故選C。124、140支社區足球隊參加全市社區足球淘汰賽,每一輪都要在未失敗過的球隊中抽簽決定比賽對手,如上一輪未失敗過的球隊是奇數,則有一隊不用比賽直接進人下—輪。問奪冠的球隊至少要參加幾場比賽? ()
A、3
B、4
C、5
D、6
【答案】:答案:B
解析:根據題意,如果是奇數隊的話,有一隊輪空,自動進入下一場。題目問冠軍至少需要參加幾場比賽,為了讓冠軍參加的場次盡可能的少,每次輪空自動進入下一場的都是冠軍。整個比賽過程為:140-70-35-18-9-5-3-2-1,需要進行8輪,有4輪是輪空的。所以冠軍至少需要進行4場比賽。故選B。125、某飲料店有純果汁(即濃度為100%)10千克,濃度為30%的濃縮還原果汁20千克。若取純果汁、濃縮還原果汁各10千克倒入10千克純凈水中,再倒入10千克的濃縮還原果汁,則得到的果汁濃度為多少。()
A、40%
B、37.5%
C、35%
D、30%
【答案】:答案:A
解析:根據題干可得,一共倒入純果汁(即濃度為100%)10千克,純凈水10千克,濃度為30%的濃縮還原果汁20千克??芍罱K溶液的量為10+10+20=40(千克),最終溶質為10+20×30%=16(千克)。則最終果汁濃度=16÷40×100%=40%。故選A。126、一條馬路的兩邊各立著10盞電燈,現在為了節省用電,決定每邊關掉3盞,但為了安全,道路起點和終點兩邊的燈必須是亮的,而且任意一邊不能連續關掉兩盞。問總共有多少種方案?()
A、120
B、320
C、400
D、420
【答案】:答案:C
解析:每一邊7盞亮著的燈形成6個空位,把3盞熄滅的燈插進去,則共有=400種方案。故選C。127、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故選C。128、張大伯賣白菜,開始定價是每千克5角錢,一點都賣不出去,后來每千克降低了幾分錢,全部白菜很快賣了出去,一共收入22.26元,則每千克降低了幾分錢?
A、3
B、4
C、6
D、8
【答案】:答案:D
解析:代入法,只有降8分時收入才能被價格整除。(2226=2×3×7×53=42×53)。故選D。129、小張購買了2個蘋果、3根香蕉、4個面包和5塊蛋糕,共消費58元。如果四種商品的單價都是正整數且各不相同,則每塊蛋糕的價格最高可能為多少元?()
A、5
B、6
C、7
D、8
【答案】:答案:D
解析:設蘋果、香蕉、面包、蛋糕的單價分別為x、y、z、w,根據共消費58元,得2x+3y+4z+5w=58。代入排除,根據最高,優先從值最大的選項代入。D選項,當w=8時,可得2x+3y+4z=18,由2x、4z、18均為偶數,則3y為偶數,即y為偶數且小于6。當y=2,有2x+4z=12,即x+2z=6,均為正整數且各不相同,若z=1,則x=4,此時滿足題意。故選D。130、2,6,18,54,()
A、186
B、162
C、194
D、196
【答案】:答案:B
解析:該數列是以3為公比的等比數列,故空缺項為:54×3=162。故選B。131、7,9,-1,5,()
A、3
B、-3
C、2
D、-1
【答案】:答案:B
解析:7+9=16,9+(-1)=8,(-1)+5=4,5+(-3)=2,其中16,8,4,2等比。故選B。132、某水庫共有10個泄洪閘,當10個泄洪閘全部打開時,8小時可將水位由警戒水位降至安全水位;只打開6個泄洪閘時,這個過程為24個小時,如水庫每小時的入庫量穩定,問如果打開8個泄洪閘時,需要多少小時可將水位降至安全水位?()
A、10
B、12
C、14
D、16
【答案】:答案:B
解析:設水庫每小時的入庫量為x。根據題意可列方程(10-x)8=(6-x)24,解得x=4,故水庫警戒水位至安全水位的容量為(10-4)×8=48;設打開8個泄洪閘需t小時可將水位降至安全水位;則48=(8-4)t,解得t=12。故選B。133、21,27,40,61,94,148,()
A、239
B、242
C、246
D、252
【答案】:答案:A
解析:依次將相鄰兩項作差得6,13,21,33,54;二次作差得7,8,12,21;再次作差得12,22,32,是連續自然數的平方。即所填數字為42+21+54+148=239。故選A。134、一項考試共有35道試題,答對一題得2分,答錯一題扣1分,不答則不得分。一名考生一共得了47分,那么,他最多答對()題。
A、26
B、27
C、29
D、30
【答案】:答案:B
解析:設答對了x道,答錯y道,則可知2x-y=47,存在沒答題目的情況,因此x+y≤35。題干問最多答對題數,則從最大的開始代入。D選項,x=30,代入2x-y=47,解得y=13,此時x+y超過35,不符;C項x=29,y=11,此時x+y超過35,不符;B項x=27,y=7,剩余1道沒答,符合題意。故選B。135、某樓盤的地下停車位,第一次開盤時平均價格為15萬元/個;第二次開盤時,車位的銷售量增加了一倍、銷售額增加了60%。那么,第二次開盤的車位平均價格為()。
A、10萬元/個
B、11萬元/個
C、12萬元/個
D、13萬元/個
【答案】:答案:C
解析:銷售額=平均價格×銷售量,已知第一次開盤平均價格為15萬元/個,賦銷售量為1,則銷售額為15萬。第二次開盤時,銷售量增加了一倍,即為2,銷售額增加了60%,得銷售額為15×(1+60%)=24(萬元),故第二次開盤平均價格為24÷2=12(萬元/個)。故選C。136、甲種酒精有4升,乙種酒精有6升,混合成的酒精含酒精62%;如果兩種酒精溶液一樣多,混合成的酒精溶液含酒精61%,乙種酒精溶液含有純酒精百分之幾?()
A、56
B、66
C、58
D、64
【答案】:答案:B
解析:設甲種酒精濃度x%,乙種酒精濃度y%。那么,4×x%+6×y%=(4+6)×62%,x%+y%=2×61%,得x=56,y=66,即乙種酒精濃度為66%。故選B。137、一件商品相繼兩次分別按折扣率為10%和20%進行折扣,已知折扣后的售價為540元,那么折扣前的售價為()。
A、600元
B、680元
C、720元
D、750元
【答案】:答案:D
解析:設原售價為x元,利用“折扣后售價為540元”得x(1-10%)(1-20%)=540。解得x=750。故選D。138、在列車平行軌道上,甲、乙兩列火車相對開來。甲列火車長236米,每秒行38米;乙列火車長275米,已知這兩列火車錯車開過用了7秒鐘,則乙列火車按這個速度通過長為2000米的隧道需要()秒鐘。
A、65
B、70
C、75
D、80
【答案】:答案:A
解析:236+275=(38+v)×7,所以v=35,那么275+2000=35t,t=65,選A。139、12,23,35,47,511,()
A、613
B、612
C、611
D、610
【答案】:答案:A
解析:數位數列,各項首位數字“1,2,3,4,5,(6)”構成等差數列,其余數字“2,3,5,7,11,(13)”構成質數數列。因此,未知項為613。故選A。140、2.1,2.2,4.1,4.4,16.1,()
A、32.4
B、16.4
C、32.16
D、16.16
【答案】:答案:D
解析:偶數項的小數部分和整數部分相同。故選D。141、學校舉行運動會,要求按照紅、黃、綠、紫的顏色插彩旗于校門口,請問第58面旗是什么顏色?()
A、黃
B、紅
C、綠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司條線活動方案
- 公司紀念品策劃方案
- 公司精神文明活動方案
- 公司節日年度策劃方案
- 公司愛心衛生間活動方案
- 公司節約能源活動方案
- 公司果園維護活動方案
- 公司求婚驚喜策劃方案
- 公司核心競爭力活動方案
- 公司芽莊旅游策劃方案
- 2025年行政執法人員執法證考試必考多選題庫及答案(共250題)
- 2023年上海高中學業水平合格性考試歷史試卷真題(含答案詳解)
- 小學教育研究方法智慧樹知到期末考試答案章節答案2024年海南師范大學
- LX電動單梁懸掛說明書介紹
- 消防水池檢查記錄
- 航天器用j30jh系列微型矩形電連接器
- 拆除新建橋梁鉆孔樁專項施工方案
- 技工序列考評、評聘管理辦法
- 2022年哈爾濱建設發展集團有限責任公司招聘筆試題庫及答案解析
- 高壓旋噴樁施工記錄
- YY 0331-2006 脫脂棉紗布、脫脂棉粘膠混紡紗布的性能要求和試驗方法
評論
0/150
提交評論