




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省公務員考試數量關系專項練習題第一部分單選題(200題)1、甲、乙、丙三輛汽車分別從A地開往千里之外的B地。若乙比甲晚出發30分鐘,則乙出發后2小時追上甲;若丙比乙晚出發20分鐘,則丙出發后5小時追上乙。若甲出發10分鐘后乙出發,當乙追上甲時,丙才出發,則丙追上甲所需時間是()。
A、110分鐘
B、150分鐘
C、127分鐘
D、128分鐘
【答案】:答案:B
解析:設甲、乙、丙三輛汽車的速度分別為x、y、z。由于甲行駛30分鐘的路程,乙需要2小時才能追上,則30x=(y-x)×2×60,化簡得x∶y=4∶5。又因乙行駛20分鐘的路程,丙需要5小時才能追上,則20y=(z-y)×5×60,化簡得y∶z=15∶16。所以三輛汽車的速度x∶y∶z=12∶15∶16。賦值甲、乙、丙的速度分別為12、15、16,甲出發10分鐘后乙出發,則乙追上甲的時間為(分鐘),故丙出發時甲已經行駛10+40=50(分鐘),設丙追上甲所需時間是t分鐘,可得方程12×50=(16-12)×t,解得t=150。故選B。2、5,10,20,(),80
A、30
B、40
C、50
D、60
【答案】:答案:B
解析:公比為2的等比數列。故選B。3、2,3,10,15,26,35,()
A、40
B、45
C、50
D、55
【答案】:答案:C
解析:2=1平方+1,3=2平方-1,10=3平方+1,15=4平方-1,26=5平方+1,35=6平方-1,問號=7平方+1,問號=50。故選C。4、7,9,-1,5,()
A、3
B、-3
C、2
D、-1
【答案】:答案:B
解析:7+9=16,9+(-1)=8,(-1)+5=4,5+(-3)=2,其中16,8,4,2等比。故選B。5、2,2,6,14,34,()
A、82
B、50
C、48
D、62
【答案】:答案:A
解析:2+2×2=6;2+6×2=14;6+14×2=34;14+34×2=82。故選A。6、某水庫共有10個泄洪閘,當10個泄洪閘全部打開時,8小時可將水位由警戒水位降至安全水位;只打開6個泄洪閘時,這個過程為24個小時,如水庫每小時的入庫量穩定,問如果打開8個泄洪閘時,需要多少小時可將水位降至安全水位?()
A、10
B、12
C、14
D、16
【答案】:答案:B
解析:設水庫每小時的入庫量為x。根據題意可列方程(10-x)8=(6-x)24,解得x=4,故水庫警戒水位至安全水位的容量為(10-4)×8=48;設打開8個泄洪閘需t小時可將水位降至安全水位;則48=(8-4)t,解得t=12。故選B。7、25與一個三位數相乘個位是0,與這個三位數相加有且只有一次進位,像這樣的三位數總共有多少個? ()
A、48
B、126
C、174
D、180
【答案】:答案:C
解析:因為25與一個三位數相乘個位是0,所以這個三位數個位上的數是0、2、4、6、8。又因為與這個三位數相加有且只有一次進位,所以當個位是0、2、4時,十位必須是8或9,百位是1-8八個數都可以,這種情況有48(8乘2乘3等于48)個數滿足條件;當個位是6或8時,十位可以是0、1、2、3、4、5、6七個數,百位是1-9九個數,這種情況有126(9乘7乘2等于126)個數滿足條件;終上所述一共有174(48+126=174)個,即:像這樣的三位數總共有174個。故選C。8、1,2,6,30,210,()
A、1890
B、2310
C、2520
D、2730
【答案】:答案:B
解析:2÷1=2,6÷2=3,30÷6=5,210÷30=7,相鄰兩項后一項除以前一項的商構成連續的質數列,即所填數字為210×11=2310。故選B。9、8,6,-4,-54,()
A、-118
B、-192
C、-320
D、-304
【答案】:答案:D
解析:依次將相鄰兩個數中后一個數減去前一個數得-2,-10,-50,構成公比為5的等比數列,即所填數字為-54+(-250)=-304。故選D。10、一個四邊形廣場,它的四邊長分別是60米、72米、96米、84米,現在四邊上植樹,四角需種樹,而且每兩棵樹的間隔相等,那么,至少要種多少棵樹?()
A、22
B、25
C、26
D、30
【答案】:答案:C
解析:根據四角需種樹,且每兩棵樹的間隔相等可知,間隔距離應為四邊邊長的公約數;要使棵樹至少,則間隔距離要盡量最大,公約數最大為12(60、72、96、84的最大公約數)。故棵數=段數=長度÷間距=(60+72+84+96)÷12=26(棵)。故選C。11、5,12,24,36,52,()
A、58
B、62
C、68
D、72
【答案】:答案:C
解析:5=2+3,12=5+7,24=11+13,36=17+19,52=23+29,全是從小到大的質數和,所以下一個是31+37=68。故選C。12、將17拆分成若干個自然數的和,這些自然數的乘積的最大值是多少?()
A、256
B、486
C、556
D、376
【答案】:答案:B
解析:若把一個整數拆分成若干個自然數之和,有大于4的數,則把大于4的這個數再分成一個2與另一個大于2的自然數之和,則這個2與大于2的這個數的乘積肯定比這個大于4的數更大。另外,如果拆分的數中含有1,則對乘積增大沒有貢獻,因此不能考慮。因此,要使加數之積最大,加數只能是2和3。但是,若加數中含有3個2,則不如將它換成2個3。因為2×2×2=8,而3×3=9。故拆分出的自然數中,至多含有兩個2,而其余都是3。故將17拆分為17=3+3+3+3+3+2時,其乘積最大,最大值為243×2=486。故選B。13、一只天平有7克、2克砝碼各一個,如果需要將140克的鹽分成50克、90克各一份,至少要稱幾次?()
A、六
B、五
C、四
D、三
【答案】:答案:D
解析:第一步,用天平將140g分成兩份,每份70g;第二步,將其中的一份70g,平均分成兩份35g;第三步,將砝碼分別放在天平的兩邊,將35g鹽放在天平兩邊至平衡,則每邊為(35+7+2)÷2=22g,則砝碼為2g的一邊,鹽就為20g,將其與第一步剩下的70g鹽混合,得到90g,剩下的就是50g。即一共稱了三次。故選D。14、2.08,8.16,24.32,64.64,()
A、160.28
B、124.28
C、160.56
D、124.56
【答案】:答案:A
解析:小數點之前滿足規律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D兩項。小數點之后構成等比數列8,16,32,64,128,小數點之后的數超過三位取后兩位,所以未知項是160.28。故選A。15、1,1,3,7,17,41,()
A、89
B、99
C、109
D、119
【答案】:答案:B
解析:第三項=第二項×2+第一項,99=41×2+17。故選B。16、一艘輪船從甲地到乙地每小時航行30千米,然后按原路返回,若想往返的平均速度為每小時40千米,則返回時每小時航行()千米。
A、80
B、75
C、60
D、96
【答案】:答案:C
解析:設甲乙兩地的距離為1,則輪船從甲地到乙地所用的時間為1/30,如果往返的平均速度為40千米,則往返一次所用的時間為2/40,那么從乙地返回甲地所用時間為2/40-1/30=1/60,所以返回時的速度為每小時1/(1/60)=60千米。故選C。17、3,7,17,115,()
A、132
B、277
C、1951
D、1955
【答案】:答案:C
解析:3×7-4=17,7×17-4=115,即所填數字為17×115-4=1951。故選C。18、小王登山,上山的速度是4km/h,到達山頂后原路返回,速度為6km/h,設山路長為9km,小王的平均速度為()km/h。
A、5
B、4.8
C、4.6
D、4.4
【答案】:答案:B
解析:平均速度為總路程除以總時間,即(2×9)÷(9÷4+9÷6)=4.8km/h。故選B。19、1,6,36,216,()
A、1296
B、1297
C、1299
D、1230
【答案】:答案:A
解析:公比為6的等比數列。故選A。20、A、B、C三個試管中各盛有10克、20克、30克水,把某種濃度的鹽水10克倒入A中,充分混合后從A中取出10克倒入B中,再充分混合后從B中取出10克倒入C中,最后得到C中鹽水的濃度為0.5%。則開始倒入試管A中的鹽水濃度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含鹽量為(30+10)×0.5%=0.2克,即從B中取出的10克中含鹽0.2克,則B的濃度為0.2÷10=2%,進而求出B中含鹽量為(20+10)×2%=0.6克,即從A中取出的10克中含鹽0.6克,可得A的濃度為0.6÷10=6%,進一步得出A中含鹽量為(10+10)×6%=1.2克,故開始倒入A中的鹽水濃度為1.2÷10=12%。故選A。21、0,3,18,33,68,95,()
A、145
B、148
C、150
D、153
【答案】:答案:C
解析:原數列寫為0=0×1,3=1×3,18=2×9,33=3×11,68=4×17,95=5×19,其中1,3,9,11,17,19構成的數列奇數項是等差數列,偶數項也是等差數列。故空缺處數字為6×25=150。故選C。22、三位評委為12名選手投票,每位評委分別都投出了7票,并且每位選手都有評委投票。得三票的選手直接晉級,得兩票的選手待定,得一票或無票的直接淘汰,則下列說法正確的是()。
A、晉級和待定的選手共6人
B、待定和淘汰的選手共7人
C、晉級的選手最多有5人
D、晉級比淘汰的選手少3人
【答案】:答案:D
解析:每位評委投了7票,那么這三位評委的選擇各包含了7位選手,畫出如下文氏圖。黑色部分代表三位評委都投票的選手,即晉級選手,記為A。陰影部分代表有兩位評委投票的選手,即待定選手,記為B。白色部分代表至多有一位評委投票的選手,即淘汰選手,記為C。D項正確,由容斥原理可知,A+B+C=12,(7+7+7)-B-2A=12,得到B+2A=9,C-A=3,即晉級選手比淘汰選手少3人。方法二:設晉級、待定、淘汰的數量分別為a、b、c,則a+b+c=12,3a+2b+c=3×7=21,得2a+b=9。A項錯誤,當a+b=6時,a=-1不成立。B項錯誤,b+c=7,則a=12-7=5,b=5-2×3=-1不可能;C項錯誤,a=5時,b=-1不可能;D項正確,c-a=3時,得2a+b=9成立。故選D。23、2,3,1,2,6,7,()
A、9
B、5
C、11
D、24
【答案】:答案:B
解析:依次將相隔兩項做和2+1=3、3+2=5、1+6=7、2+7=9,是公差為2的等差數列。即所填數字為(9+2)-6=5。故選B。24、2,7,14,21,294,()
A、28
B、35
C、273
D、315
【答案】:答案:D
解析:21=7+14,14=2×7,294=14×21,為兩項相加、相乘交替得到后-項,即所填數字為21+294=315。故選D。25、2,3,6,18,108,()
A、1944
B、1620
C、1296
D、1728
【答案】:答案:A
解析:2×3=6,3×6=18,6×18=108,……前兩項相乘等于下一項,則所求項為18×108,尾數為4。故選A。26、187,259,448,583,754,()
A、847
B、862
C、915
D、944
【答案】:答案:B
解析:各項數字和均為16。故選B。27、某木場有甲,乙,丙三位木匠師傅生產桌椅,甲每天能生產12張書桌或13把椅子;乙每天能生產9張書桌或12把椅子,丙每天能生產9張書桌或15把椅子,現在書桌和椅子要配套生產(每套一張書桌一把椅子),則7天內這三位師傅最多可以生產桌椅()套。
A、116
B、129
C、132
D、142
【答案】:答案:B
解析:將甲、乙、丙三位木匠師傅生產桌椅的效率列表如下,分析可知,甲生產書桌的相對效率最高,丙生產椅子的相對效率最高,則安排甲7天全部生產書桌,丙7天全部生產椅子,乙協助甲丙完成。甲7天可生產桌子12×7=84(張),丙7天可生產椅子15×7=105(把)。設乙生產書桌x天,則生產椅子(7-x)天,當生產的書桌數與椅子數相同時,獲得套數最多,可列方程84+9x=105+12×(7-x),解得x=5,則乙可生產書桌9×5=45(張)。故7天內這三位師傅最多可以生產桌椅84+45=129(套)。故選B。28、7.1,8.6,14.2,16.12,28.4,()
A、32.24
B、30.4
C、32.4
D、30.24
【答案】:答案:A
解析:奇數項依次為:7.1、14.2、28.4,是公比為2的等比數列;偶數項依次為:8.6、16.12,是公比為2的等比數列,即所填數字為16.12×2=32.24。故選A。29、商店購入一百多件A款服裝,其單件進價為整數元,總進價為1萬元,已知單件B款服裝的定價為其進價的1.6倍,其進價為A款服裝的75%,銷售每件B款服裝的利潤為A款服裝的一半,某日商店以定價銷售A款服裝的總銷售額超過2500元,問當天至少銷售了多少件A款服裝?()
A、13
B、15
C、17
D、19
【答案】:答案:C
解析:推出A款服裝有125件,進價為80元,B款服裝進價為80×0.75=60(元),B款服裝定價為60×1.6=96(元),利潤為96-60=36(元),A款服裝利潤為36×2=72(元),所以A款服裝售價為80+72=152(元)。銷售數量至少為2500÷152=16.4,取整為17件。故選C。30、8,3,17,5,24,9,26,18,30,()
A、22
B、25
C、33
D、36
【答案】:答案:B
解析:多重數列。很明顯數列很長,確定為多重數列。先考慮交叉,發現沒有規律,無對應的答案。因為總共十項,考慮兩兩分組,再內部作加減乘除方等運算,發現每兩項的和依次為11,22,33,44,(55=30+25)。故選B。31、某單位組織工會活動,30名員工自愿參加做游戲。游戲規則:按1~30號編號并報數,第一次報數后,單號全部站出來,然后每次余下的人中第一個開始站出來,隔一人站出來一個人。最后站出來的人給大家唱首歌。那么給大家唱歌的員工編號是()。
A、14
B、16
C、18
D、20
【答案】:答案:B
解析:第一次報數后,單號全部站出來,剩余號碼為2、4、6、8、10······30,均為2的倍數;每次余下的人中第一個開始站出來,隔一人站出來一個人,剩余號碼為4、8、12、16、20、24、28,均為4的倍數;再從余下的號碼中第一個人開始站出來,隔一個人站出來一個人,剩余號碼為8、16、24,均為8的倍數;重復上一次的步驟,剩余16號,為16的倍數。1—30中16的倍數只有16。故選B。32、6,6,12,36,()
A、124
B、140
C、144
D、164
【答案】:答案:C
解析:兩兩相除。6/6=1,6/12=1/2,12/36=1/3,下個數為36/()=1/4。故選C。33、一人上樓,邊走邊數臺階。從一樓走到四樓,共走了54級臺階。如果每層樓之間的臺階數相同,他一直要走到八樓,問他從一樓到八樓一共要走多少級臺階?()
A、126
B、120
C、114
D、108
【答案】:答案:A
解析:從一樓走到四樓,共走了54級臺階,而他實際走了3層樓的高度,所以每層樓的臺階數為54÷3=18級。他從一樓到八樓一共要走7層樓,因此共要走7×18=126級臺階。故選A。34、1,1,2,6,30,240,()
A、1200
B、1800
C、2400
D、3120
【答案】:答案:D
解析:1*2=2,2*3=6,6*5=30,30*8=240,后面除以前面的商是斐波那契數列2、3、5、8,即后一項是前面2項的和,8后面是13,240后面應該是240*13=3120。故選D。35、甲、乙、丙三名質檢員對一批依次編號為1~100的電腦進行質量檢測,每個人均從隨機序號開始,按順序往后檢測,如檢測到編號為100的電腦,則該質檢員的檢測工作結束。某一時刻,甲檢測了76臺電腦,乙檢測了61臺電腦,丙檢測了54臺電腦,則甲、乙、丙三人均檢測過的電腦至少有()臺。
A、12
B、15
C、16
D、18
【答案】:答案:B
解析:因為甲、乙、丙三人均從隨機序號開始,按順序往后檢測。為了使三人均檢測過的電腦最少,所以三人的檢測要更分散,因為甲檢測了76臺電腦,覆蓋面比較大,所以可以先把乙、丙共同檢測的電腦分散在序號的最兩端,最少為61+54-100=15(臺),甲會覆蓋到乙、丙檢測的公共部分,故三人均檢測過的為15臺。故選B。36、學校舉行運動會,要求按照紅、黃、綠、紫的顏色插彩旗于校門口,請問第58面旗是什么顏色?()
A、黃
B、紅
C、綠
D、紫
【答案】:答案:A
解析:根據“按照紅、黃、綠、紫”可知,四個顏色為一個周期,則58÷4=14...2,故第58面旗是14個周期后的第二面,即為黃色。故選A。37、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,奇數項是2,偶數項構成公差為1的等差數列,即所填數字為6+(-1)=5。故選B。38、學校舉行象棋比賽,共有甲、乙、丙、丁4支隊。規定每支隊都要和另外3支隊各比賽一場,勝得3分,敗得0分,平雙方各得1分。已知:(1)這4支隊三場比賽的總得分為4個連續的奇數;(2)乙隊總得分排在第一;(3)丁隊恰有兩場同對方打成平局,其中有一場是與丙隊打成平局的。問丙隊得幾分?()
A、1分
B、3分
C、5分
D、7分
【答案】:答案:A
解析:每支隊均比賽3場,因此最高分不超過9分,又知總得分為4個連續的奇數,因此得分有3、5、7、9和1、3、5、7兩種情況。若最高分為9分,那么排名第二的隊最多贏現場得6分,不可能得7分,不符合題意,故乙隊得7分,即2勝1平。由條件(3)知,丁隊恰有兩場同對方打成平局,積分2分,為偶數,故另一場只能為勝,共得5分。由此可知,丙隊得分為1或3分。由于丁隊一場未敗,故乙隊獲勝的兩場只能是甲隊和丙隊。目前已知丙隊戰兩場,一負一平,積1分,另一場無論是勝或平,積分均為偶數,故這一場只能為負,總積分為1分。故選A。39、一項考試共有35道試題,答對一題得2分,答錯一題扣1分,不答則不得分。一名考生一共得了47分,那么,他最多答對()題。
A、26
B、27
C、29
D、30
【答案】:答案:B
解析:設答對了x道,答錯y道,則可知2x-y=47,存在沒答題目的情況,因此x+y≤35。題干問最多答對題數,則從最大的開始代入。D選項,x=30,代入2x-y=47,解得y=13,此時x+y超過35,不符;C項x=29,y=11,此時x+y超過35,不符;B項x=27,y=7,剩余1道沒答,符合題意。故選B。40、有一1500米的環形跑道,甲,乙二人同時同地出發,若同方向跑,50分鐘后甲比乙多跑一圈,若以反方向跑,2分鐘后二人相遇,則乙的速度為()。
A、330米/分鐘
B、360米/分鐘
C、375米/分鐘
D、390米/分鐘
【答案】:答案:B
解析:同向追及50分鐘后甲比乙多跑一圈得:(V甲-V乙)×50=1500;由反向跑2分鐘后相遇有:(V甲+V乙)×2=1500,解得V乙=360(米/分鐘)。故選B。41、0,1,3,10,()
A、101
B、102
C、103
D、104
【答案】:答案:B
解析:思路一:0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102。思路二:0(第一項)2+1=1(第二項)12+2=332+1=10102+2=102,其中所加的數呈1,2,1,2規律。思路三:各項除以3,取余數=>0,1,0,1,0,奇數項都能被3整除,偶數項除3余1。故選B。42、2,6,13,39,15,45,23,()
A、46
B、66
C、68
D、69
【答案】:答案:D
解析:6=2×3,39=13×3,45=15×3。兩個數為一組,每組中的第二個數是第一個數的三倍,即所填數字為23×3=69。故選D。43、甲、乙二人現在的年齡之和是一個完全平方數。7年前,他們各自的年齡都是完全平方數。再過多少年,他們的年齡之和又是完全平方數?()
A、20
B、18
C、16
D、9
【答案】:答案:B
解析:設七年前甲、乙的年齡分別為x、y歲,則七年后兩人的年齡和為(x+7)+(y+7)=x+y+14,根據題意x、y、x+y+14均為完全平方數。100以內的平方數有1、4、9、16、25、36、49、64、81、100,其中1+49+14=64,1、49、64均為完全平方數,則七年前甲1歲,乙49歲,現在甲為8歲,乙為56歲,年齡和為64,甲乙年齡和為偶數,下一個平方數為偶數的是100,需要再過(100-64)÷2=18年。故選B。44、甲乙兩船從相距50千米的地方起航,船速不變。兩船在逆水中航行,甲航行100千米恰好趕上乙;如果兩船在順水中航行,那么甲追上乙需航行多遠?()
A、500千米
B、100~500千米
C、100千米
D、大于100千米
【答案】:答案:D
解析:不管是順水還是逆水,水速對兩船的影響是一樣的,影響追及時間產生的僅為兩船船速之差。因此無論逆水還是順水,追及時間相同,逆水時甲船追上乙船需航行100千米,而順水航行時速度大于逆水時的速度,航行距離應大于100千米。故選D。45、2,3,6,15,()
A、25
B、36
C、42
D、64
【答案】:答案:C
解析:相鄰兩項間做差。做差后得到的數為1,3,9;容易觀察出這是一個等比數列,所以做差數列的下一項為27,則答案為15+27=42。故選C。46、-1,6,25,62,()
A、123
B、87
C、150
D、109
【答案】:答案:A
解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故選A。47、102,314,526,()
A、624
B、738
C、809
D、849
【答案】:答案:B
解析:314-102=212,526-314=212。后一項-前一項=212,即所填數字為536+212=738。故選B。48、將17拆分成若干個自然數的和,這些自然數的乘積的最大值是多少?()
A、256
B、486
C、556
D、376
【答案】:答案:B
解析:若把一個整數拆分成若干個自然數之和,有大于4的數,則把大于4的這個數再分成一個2與另一個大于2的自然數之和,則這個2與大于2的這個數的乘積肯定比這個大于4的數更大。另外,如果拆分的數中含有1,則對乘積增大沒有貢獻,因此不能考慮。因此,要使加數之積最大,加數只能是2和3。但是,若加數中含有3個2,則不如將它換成2個3。因為2×2×2=8,而3×3=9。故拆分出的自然數中,至多含有兩個2,而其余都是3。故將17拆分為17=3+3+3+3+3+2時,其乘積最大,最大值為243×2=486。故選B。49、四人年齡為相鄰的自然數列且最年長者不超過30歲,四人年齡之乘積能被2700整除且不能被81整除。則四人中最年長者多少歲?()
A、30
B、29
C、28
D、27
【答案】:答案:C
解析:結合最年長者,優先從選項最大值代入:A選項:30×29×28×27,尾數只有一個0,不能被2700整除,排除;B選項:29×28×27×26,尾數不為0,不能被2700整除,排除;C選項:28×27×26×25=(4×7)×27×26×25,能被2700整除,不能被81整除,正確。故選C。50、2,7,13,20,25,31,()
A、35
B、36
C、37
D、38
【答案】:答案:D
解析:依次將相鄰兩個數中后一個數減去前一個數得5,6,7,5,6,為(5,6,7)三個數字組成的循環數列,即所填數字為31+7=38。故選D。51、226,264,316,388,()
A、236
B、386
C、486
D、566
【答案】:答案:C
解析:226=225+1=152+13,264=256+8=162+23,316=289+27=172+33,388=324+64=182+43,由此可以推知下一項應為192+53=486。故選C。52、A地到B地的道路是下坡路。小周早上6:00從A地出發勻速騎車前往B地,7:00時到達兩地正中間的C地。到達B地后,小周立即勻速騎車返回,在10:00時又途經C地。此后小周的速度在此前速度的基礎上增加1米/秒。最后在11:30回到A地。問A、B兩地間的距離在以下哪個范圍內?
A.40~50公里
B.大于50公里
C.小于30公里
D.30~40公里
【答案】:答案:A
解析:設小周下坡速度為,上坡速度為。根據條件分析可列下表:在上坡階段B→C=C→A,可得,解得=3m/s,根據1m/s=3600m/h,因此。故正確答案為A。53、1,6,5,7,2,8,6,9,()
A、1
B、2
C、3
D、4
【答案】:答案:C
解析:本題為隔項遞推數列,存在關系:第三項=第二項-第一項,第五項=第四項-第三項,……因此未知項為9-6=3。故選C。54、12,23,35,47,511,()
A、613
B、612
C、611
D、610
【答案】:答案:A
解析:數位數列,各項首位數字“1,2,3,4,5,(6)”構成等差數列,其余數字“2,3,5,7,11,(13)”構成質數數列。因此,未知項為613。故選A。55、8,10,14,18,()
A、24
B、32
C、26
D、20
【答案】:答案:C
解析:8×2-6=10;10×2-6=14;14×2-10=18;18×2-10=26。故選C。56、為幫助果農解決銷路,某企業年底買了一批水果,平均發給每部門若干筐之后還多了12筐,如果再買進8筐則每個部門可分得10筐,則這批水果共有()筐。
A、192
B、198
C、200
D、212
【答案】:答案:A
解析:由于再買進8筐則每個部門可分得10筐,則總筐數加8應能被10整除,排除B、C。將A項代入題目,可得部門數為(192+8)÷10=20(個),則原來平均發給每部門(192-12)÷20=9(筐),水果筐數為整數解,符合題意。故選A。57、41,59,32,68,72,()
A、28
B、36
C、40
D、48
【答案】:答案:A
解析:兩兩分組得到(41,59),(32,68),(72,()),發現組內做和均為100。故選A。58、調研人員在一次市場調查活動中收回了435份調查問卷,其中80%的調查問卷上填寫了被調查者的手機號碼。那么調研人員至少需要從這些調查表中隨機抽出多少份,才能保證一定能找到兩個手機號碼后兩位相同的被調查者?()
A、101
B、175
C、188
D、200
【答案】:答案:C
解析:在435份調查問卷中有435×20%=87份沒有寫手機號;且手機號碼后兩位可能出現的情況一共10×10=100種,因此要保證一定能找到兩個手機號碼后兩位相同的被調查者,至少需要抽取87+100+1=188份。故選C。59、12,23,34,45,56,()
A、66
B、67
C、68
D、69
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數,構成公差為11的等差數列,即所填的數字為56+11=67。故選B。60、1,8,9,4,(),1/6
A、3
B、2
C、1
D、1/3
【答案】:答案:C
解析:1=14,8=23,9=32,4=41,1=50,1/6=6(-1)。故選C。61、30,42,56,72,()
A、86
B、60
C、90
D、94
【答案】:答案:C
解析:第一次做差之后為12、14、16,是公差為2的等差數列,下一個應為18,原數列下一項為18+72=90。故選C。62、2,12,40,112,()
A、224
B、232
C、288
D、296
【答案】:答案:C
解析:原數列可以寫成1×2,3×4,5×8,7×16,前一個乘數數列為1,3,5,7,是等差數列,下一項是9,后一個乘數數列為2,4,8,16,是等比數列,下一項是32,所以原數列空缺項為9×32=288。故選C。63、有4堆木材,都堆成正三角形垛,層數分別為5,6,7,8層,那么共有木材()根。
A、110
B、100
C、120
D、130
【答案】:答案:B
解析:5層木材有1+2+3+4+5=15,6層木材有1+2+3+4+5+6=21,7層木材有1+2+3+4+5+6+7=28,8層木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故選B。64、甲、乙兩人在一條400米的環形跑道上從相距200米的位置出發,同向勻速跑步。當甲第三次追上乙的時候,乙跑了2000米。問甲的速度是乙的多少倍?()
A、1.2
B、1.5
C、1.6
D、2.0
【答案】:答案:B
解析:環形同點同向出發每追上一次,甲比乙多跑一圈。第一次由于是不同起點,甲比乙多跑原來的差距200米;之后兩次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,時間相同,則速度比與路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故選B。65、1,6,36,216,()
A、1296
B、1297
C、1299
D、1230
【答案】:答案:A
解析:公比為6的等比數列。故選A。66、25與一個三位數相乘個位是0,與這個三位數相加有且只有一次進位,像這樣的三位數總共有多少個? ()
A、48
B、126
C、174
D、180
【答案】:答案:C
解析:因為25與一個三位數相乘個位是0,所以這個三位數個位上的數是0、2、4、6、8。又因為與這個三位數相加有且只有一次進位,所以當個位是0、2、4時,十位必須是8或9,百位是1-8八個數都可以,這種情況有48(8乘2乘3等于48)個數滿足條件;當個位是6或8時,十位可以是0、1、2、3、4、5、6七個數,百位是1-9九個數,這種情況有126(9乘7乘2等于126)個數滿足條件;終上所述一共有174(48+126=174)個,即:像這樣的三位數總共有174個。故選C。67、設袋中裝有標著數字為1,2,…,8等8個簽,并規定標有數字1,4,7的為中獎號。甲、乙、丙、丁
4人依次從袋中隨機抽取一個簽、已知丙中獎了、則乙不中獎的概率為多少?()
A、5/8
B、3/7
C、3/8
D、5/7
【答案】:答案:D
解析:已知丙中獎,則剩余7個簽,還有2個是中獎號,可得乙不中獎概率為。故選D。68、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故選C。69、甲、乙兩人在一條400米的環形跑道上從相距200米的位置出發,同向勻速跑步。當甲第三次追上乙的時候,乙跑了2000米。問甲的速度是乙的多少倍?()
A、1.2
B、1.5
C、1.6
D、2.0
【答案】:答案:B
解析:環形同點同向出發每追上一次,甲比乙多跑一圈。第一次由于是不同起點,甲比乙多跑原來的差距200米;之后兩次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,時間相同,則速度比與路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故選B。70、在某城市中,有60%的家庭訂閱某種日報,有85%的家庭有電視機。假定這兩個事件是獨立的,今隨機抽出一個家庭,所抽家庭既訂閱該種日報又有電視機的概率是()。
A、0.09
B、0.25
C、0.36
D、0.51
【答案】:答案:D
解析:由于是獨立重復試驗,故既訂閱該中日報又有電視機的概率是60%×85%=51%。故選D。71、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故選C。72、97,95,92,87,()
A、81
B、79
C、74
D、66
【答案】:答案:B
解析:97+(-2)=95,95+(-3)=92,92+(-5)=87,數列中兩項之差形成的數列為-2,-3,-5,而(-2)+(-3)=(-5),后一項為前兩項之和,下一個數為(-3)+(-5)=(-8),即所填數字為87+(-8)=79。故選B。73、甲、乙二人現在的年齡之和是一個完全平方數。7年前,他們各自的年齡都是完全平方數。再過多少年,他們的年齡之和又是完全平方數?()
A、20
B、18
C、16
D、9
【答案】:答案:B
解析:設七年前甲、乙的年齡分別為x、y歲,則七年后兩人的年齡和為(x+7)+(y+7)=x+y+14,根據題意x、y、x+y+14均為完全平方數。100以內的平方數有1、4、9、16、25、36、49、64、81、100,其中1+49+14=64,1、49、64均為完全平方數,則七年前甲1歲,乙49歲,現在甲為8歲,乙為56歲,年齡和為64,甲乙年齡和為偶數,下一個平方數為偶數的是100,需要再過(100-64)÷2=18年。故選B。74、祖父今年65歲,3個孫子的年齡分別是15歲、13歲與9歲,問多少年后3個孫子的年齡之和等于祖父的年齡?()
A、23
B、14
C、25
D、16
【答案】:答案:B
解析:設n年后3個孫子的年齡之和等于祖父的年齡,可列方程:65+n=(15+n)+(13+n)+(9+n),解得n=14。故選B。75、-1,6,25,62,()
A、123
B、87
C、150
D、109
【答案】:答案:A
解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故選A。76、在某城市中,有60%的家庭訂閱某種日報,有85%的家庭有電視機。假定這兩個事件是獨立的,今隨機抽出一個家庭,所抽家庭既訂閱該種日報又有電視機的概率是()。
A、0.09
B、0.25
C、0.36
D、0.51
【答案】:答案:D
解析:由于是獨立重復試驗,故既訂閱該中日報又有電視機的概率是60%×85%=51%。故選D。77、某制衣廠接受一批服裝訂貨任務,按計劃天數進行生產,如果每天平均生產20套服裝,就比訂貨任務少生產100套;如果每天生產23套服裝,就可超過訂貨任務20套。那么,這批服裝的訂貨任務是多少套?()
A、760
B、1120
C、900
D、850
【答案】:答案:C
解析:由題意每天生產多出3套,總共就會多生產出120,那么計劃的天數為40天,所以這批服裝為20×40+100=900(套)。故選C。78、某商店有兩個進價不同的計算器都賣了64元,其中一個贏利60%,另一個虧本20%。在這次買賣中,這家商店()。
A、不賠不賺
B、賺了8元
C、賠了8元
D、賺了32元
【答案】:答案:B
解析:根據題意可知,64÷(1+60%)=40,64÷(1-20%)=80,即兩個計算器的成本分別為40元、80元。64+64-40-80=8元,即賺了8元。故選B。79、有一1500米的環形跑道,甲,乙二人同時同地出發,若同方向跑,50分鐘后甲比乙多跑一圈,若以反方向跑,2分鐘后二人相遇,則乙的速度為()。
A、330米/分鐘
B、360米/分鐘
C、375米/分鐘
D、390米/分鐘
【答案】:答案:B
解析:同向追及50分鐘后甲比乙多跑一圈得:(V甲-V乙)×50=1500;由反向跑2分鐘后相遇有:(V甲+V乙)×2=1500,解得V乙=360(米/分鐘)。故選B。80、某機場一條自行人行道長42m,運行速度0.75m/s。小王在自行人行道的起始點將一件包裹通過自動人行道傳遞給位于終點位置的小明。小明為了節省時間,在包裹開始傳遞時,沿自行人行道逆行領取包裹并返回。假設小明的步行速度是1m/s,則小明拿著包裹并回到自行人行道終點共需要的時間是()。
A、4秒
B、42秒
C、48秒
D、56秒
【答案】:答案:C
解析:小明沿自行人行道走,取到包裹用時為42/(1+0.75)=24秒,小明運動距離24×1=24米,返回時間=24/1=24秒,共用時24+24=48秒。故選C。81、一個人從家到公司,當他走到路程的一半的時候,速度下降了10%,問:他走完全程所用時間的前半段和后半段所走的路程比是()。
A、10:9
B、21:19
C、11:9
D、22:18
【答案】:答案:B
解析:設前半程速度為10,則后半程速度為9,路程總長為180,則前半程用時9,后半程用時10,總耗時19,一半為9.5。因此前半段時間走過的路程為90+9×(9.5-9)=94.5,后半段時間走過的路程為9×9.5=85.5。兩段路程之比為94.5:85.5=21:19。故選B。82、-3,-2,1,6,()
A、8
B、11
C、13
D、15
【答案】:答案:C
解析:相鄰兩項之差依次為1,3,5,(7),應填入13。故選C。83、某服裝店有一批襯衣共76件,分別賣給了33位顧客,每位顧客最多買了3件。襯衣定價為100元,買1件按原價,買2件總價打九折,買3件總價打八折。最后賣完這批襯衣共收入6460元,則買了3件的顧客有()位。
A.4
B.8
C.14
D.15
【答案】:答案:C
解析:由題意可設買了1件、2件、3件衣服的人數分別為x、y、z人,則可得x+y+z=33,x+2y+3z=76,,聯立求解可得x=4,y=15,z=14。故正確答案為C。84、1806,1510,1214,918,()
A、724
B、722
C、624
D、622
【答案】:答案:D
解析:百位和千位看做一個數列,是18,15,12,9,構成公差為-3的等差數列,所以下一項應為6;十位和個位看做一個數列,是06,10,14,18,構成公差為4的等差數列,所以下一項應為22。故未知項應為622。故選D。85、要將濃度分別為20%和5%的A、B兩種食鹽水混合配成濃度為15%的食鹽水900克,問5%的食鹽水需要多少克?()
A、250
B、285
C、300
D、325
【答案】:答案:C
解析:設需要5%的食鹽水x克,則需要20%的食鹽水(900-x)克;根據混合后濃度為15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故選C。86、10,9,17,50,()
A、100
B、99
C、199
D、200
【答案】:答案:C
解析:10×1-1=9;9×2-1=17;17×3-1=50;50×4-1=199。故選C。87、現有5盒動畫卡片,各盒卡片張數分別為:7、9、11、14、17??ㄆ磮D案分為米老鼠、葫蘆娃、喜羊羊和灰太狼4種,每個盒內裝的是同圖案的卡片。已知米老鼠的卡片只有一盒,而喜羊羊、灰太狼圖案的卡片數之和比葫蘆娃圖案的多1倍。據此可知,圖案為米老鼠的卡片張數為()。
A、7
B、9
C、14
D、17
【答案】:答案:A
解析:(喜洋洋+灰太狼):葫蘆娃=2:1,喜洋洋+灰太狼+葫蘆娃是3的倍數;總張數=7+9+11+14+17=58張,58除以3余1,可得米老鼠的卡片只能是7張。故選A。88、一旅行團共有50位游客到某地旅游,去A景點的游客有35位,去B景點的游客有32位,去C景點的游客有27位,去A、B景點的游客有20位,去B、C景點的游客有15位,三個景點都去的游客有8位,有2位游客去完一個景點后先行離團,還有1位游客三個景點都沒去。那么,50位游客中有多少位恰好去了兩個景點?()
A、29
B、31
C、35
D、37
【答案】:答案:A
解析:設去兩個景點的人數為y,根據三集合非標準型公式可得:35+32+27-y-2×8=50-1,解得y=29。故選A。89、如果現在是18點整,那么分針旋轉1990圈之后是幾點鐘?()
A、16
B、17
C、18
D、19
【答案】:答案:A
解析:分針旋轉1圈為一小時,所以分針旋轉12圈,時針旋轉1圈,仍為18點整。由“1990÷12=165余10”可知,此時時鐘表示的時間應是16點整。故選A。90、-1,3,-3,-3,-9,()
A、-9
B、-4
C、-14
D、-45
【答案】:答案:D
解析:題干倍數關系明顯,考慮作商。后項除以前項得到新數列:-3、-1、1、3,新數列為公差是2的等差數列,則新數列的下一項應為5,所求項為:-9×5=-45。故選D。91、7,7,9,17,43,()
A、119
B、117
C、123
D、121
【答案】:答案:C
解析:依次將相鄰兩項做差得0,2,10,26,再次做差得2,6,18。構成一個公比為3的等比數列,即所填數字為43+26+18×3=123。故選C。92、某一學校有500人,其中選修數學的有359人,選修文學的有408人,那么兩種課程都選的學生至少有多少?()
A、165人
B、203人
C、267人
D、199人
【答案】:答案:C
解析:設至少有x人兩種課程都選,則359-x+408-x+x≤500,解得x≥267,則兩種課程都選的學生至少有267人。故選C。93、將17拆分成若干個自然數的和,這些自然數的乘積的最大值是多少?()
A、256
B、486
C、556
D、376
【答案】:答案:B
解析:若把一個整數拆分成若干個自然數之和,有大于4的數,則把大于4的這個數再分成一個2與另一個大于2的自然數之和,則這個2與大于2的這個數的乘積肯定比這個大于4的數更大。另外,如果拆分的數中含有1,則對乘積增大沒有貢獻,因此不能考慮。因此,要使加數之積最大,加數只能是2和3。但是,若加數中含有3個2,則不如將它換成2個3。因為2×2×2=8,而3×3=9。故拆分出的自然數中,至多含有兩個2,而其余都是3。故將17拆分為17=3+3+3+3+3+2時,其乘積最大,最大值為243×2=486。故選B。94、一條馬路的兩邊各立著10盞電燈,現在為了節省用電,決定每邊關掉3盞,但為了安全,道路起點和終點兩邊的燈必須是亮的,而且任意一邊不能連續關掉兩盞。問總共有多少種方案?()
A、120
B、320
C、400
D、420
【答案】:答案:C
解析:每一邊7盞亮著的燈形成6個空位,把3盞熄滅的燈插進去,則共有=400種方案。故選C。95、2,4,10,18,28,(),56
A、32
B、42
C、52
D、54
【答案】:答案:B
解析:因式分解數列。2=1×2,4=1×4,10=2×5,18=3×6,28=4×7,()=?×?,56=7×8,每一項的兩個因子之和分別為3、5、7、9、11、()、15,構成公差為2的等差數列。由此可知,空缺項的兩個因子的和為13,結合選項,只有B項的42=6×7分解后兩個因子的和為13。故選B。96、7,9,-1,5,()
A、3
B、-3
C、2
D、-2
【答案】:答案:B
解析:第三項=(第一項-第二項)/2=>-1=(7-9)/25=(9-(-1))/2-3=(-1-5)/2。故選B。97、5,12,24,36,52,()
A、58
B、62
C、68
D、72
【答案】:答案:C
解析:5=2+3,12=5+7,24=11+13,36=17+19,52=23+29,全是從小到大的質數和,所以下一個是31+37=68。故選C。98、1,2,4,3,5,6,9,18,()
A、14
B、24
C、27
D、36
【答案】:答案:A
解析:位于奇數項的1、4、5、9構成和數列,位于偶數項的2、3、6、18構成積數列,即所填的奇數項應為5+9=14。故選A。99、1,2,0,3,-1,4,()
A、-2
B、0
C、5
D、6
【答案】:答案:A
解析:奇數項1、0、-1、(-2)是公差為-1的等差數列;偶數項2、3、4是連續自然數。故選A。100、某出版社新招了10名英文、法文和日文方向的外文編輯,其中既會英文又會日文的小李是唯一掌握一種以上外語的人。在這10人中,會法文的比會英文的多4人,是會日文人數的兩倍。問只會英文的有幾人?()
A、2
B、0
C、3
D、1
【答案】:答案:D
解析:設會日文的有x人,則會法文的有2x人,會英文的有(2x-4)人,由于小李既會英文也會日文,被統計兩次,故10人統計了11人次。根據人次總數,得方程11=x+2x+2x-4,解得x=3,則會英文的人為2x-4=2(人),因小李既會英文又會日文,所以只會英文的只有2-1=1(人),故選D。101、某單位組織工會活動,30名員工自愿參加做游戲。游戲規則:按1~30號編號并報數,第一次報數后,單號全部站出來,然后每次余下的人中第一個開始站出來,隔一人站出來一個人。最后站出來的人給大家唱首歌。那么給大家唱歌的員工編號是()。
A、14
B、16
C、18
D、20
【答案】:答案:B
解析:第一次報數后,單號全部站出來,剩余號碼為2、4、6、8、10······30,均為2的倍數;每次余下的人中第一個開始站出來,隔一人站出來一個人,剩余號碼為4、8、12、16、20、24、28,均為4的倍數;再從余下的號碼中第一個人開始站出來,隔一個人站出來一個人,剩余號碼為8、16、24,均為8的倍數;重復上一次的步驟,剩余16號,為16的倍數。1—30中16的倍數只有16。故選B。102、3,4,10,33,136,()
A、685
B、424
C、314
D、149
【答案】:答案:A
解析:4=(3+1)×1,10=(4+1)×2,33=(10+1)×3,136=(33+1)×4,an=(an-1+1)×(n-1)(n≥2),即所填數字應為(136+1)×5=685。故選A。103、25,32,37,47,()
A、56
B、57
C、58
D、590
【答案】:答案:C
解析:25+2+5=32,32+3+2=37,37+3+7=47,第一項+第一項的個位數字+第一項的十位數字=第二項,即所填數字為47+4+7=58。故選C。104、某班有56名學生,每人都參加了a、b、c、d、e五個興趣班中的一個。已知有27人參加a興趣班,參加b興趣班的人數第二多,參加c、d興趣班的人數相同,e興趣班的參加人數最少,只有6人,問參加b興趣班的學生有多少個?()
A、7個
B、8個
C、9個
D、10個
【答案】:答案:C
解析:設b班人數為x,c、d班的人數均為y,由b班人數第二多,e班人數最少,可知各班人數關系為:27>x>y>6。該班有56名學生,56=27+x+y+y+6,即x+2y=23,其中2y是偶數,23為奇數,則x為奇數,排除B、D。代入A選項,當x=7時,y=8,則x<Y,不符合題意,排除。故選C。105、某快速反應部隊運送救災物資到災區。飛機原計劃每分鐘飛行12千米,由于災情危急,飛行速度提高到每分鐘15千米,結果比原計劃提前30分鐘到達災區,則機場到災區的距離是多少千米?()
A、1600
B、1800
C、2050
D、2250
【答案】:答案:B
解析:設機場到災區的距離為x,由每分鐘飛行12千米可知,原飛行時間為;由每分鐘15千米可知,現飛行時間為。根據比原計劃提前30分鐘,可得,解得x=1800(千米)。故選B。106、某種細胞開始時有2個,1小時后分裂成4個并死去1個,2小時后分裂成6個并死去1個,3小時后分裂成10個并死去1個……按此規律,6小時后細胞存活的個數有多少?()
A、63
B、65
C、67
D、71
【答案】:答案:B
解析:1小時后細胞存活的個數為2×2-1=3;2小時后為2×3-1=5;3小時后為2×5-1=9……按此規律,n小時后細胞存活的個數為。故6小時后細胞存活的個數是(個)。故選B。107、在列車平行軌道上,甲、乙兩列火車相對開來。甲列火車長236米,每秒行38米;乙列火車長275米,已知這兩列火車錯車開過用了7秒鐘,則乙列火車按這個速度通過長為2000米的隧道需要()秒鐘。
A、65
B、70
C、75
D、80
【答案】:答案:A
解析:236+275=(38+v)×7,所以v=35,那么275+2000=35t,t=65,選A。108、60名員工投票從甲、乙、丙三人中評選最佳員工,選舉時每人只能投票選舉一人,得票最多的人當選。開票中途累計,前30張選票中,甲得15票,乙得10票,丙得5票。問在尚未統計的選票中,甲至少再得多少票就一定當選?()
A、15
B、13
C、10
D、8
【答案】:答案:B
解析:構造最不利,由題意,還剩30名員工沒有投票,考慮最不利的情況,乙對甲的威脅最大,先給乙5張選票,甲乙即各有15張選票,其余25張選票中,甲只要在獲得13張選票就可以確定當選。故選B。109、6,9,10,14,17,21,27,()
A、28
B、29
C、30
D、31
【答案】:答案:C
解析:依次將奇數項做差得10-6=4、17-10=7、27-17=10,4、7、10構成公差為3的等差數列;又依次將偶數項做差得14-9=5、21-14=7,若加入9則5、7、9可構成公差為2的等差數列,即所填數字為21+9=30。故選C。110、張老師家四代同堂,且從父親、張老師、兒子到孫子,每兩代人的年齡差相同。5年前張老師父親的年齡是兒子的3倍,8年后張老師的年齡是孫子的5倍。問今年四個人的年齡之和為()。
A、168歲
B、172歲
C、176歲
D、180歲
【答案】:答案:C
解析:父親、張老師、兒子、孫子每兩代人年齡差相同,設此年齡差為d,則父親為(兒+2d),張老師為 (兒+d),孫子為(兒-d),因此四人年齡總和為(4兒+2d)。由5年前張老師父親年齡是兒子的3倍即比兒子大2倍,即2d=2(兒-5)①;由8年后張老師年齡是孫子的5倍即比孫子大4倍即2d=4(兒-d+8)②;由①②可得兒=31,d=26,因此四人年齡總和為4兒+2d=4×31+2×26=176(歲)。故選C。111、A、B、C三個試管中各盛有10克、20克、30克水,把某種濃度的鹽水10克倒入A中,充分混合后從A中取出10克倒入B中,再充分混合后從B中取出10克倒入C中,最后得到C中鹽水的濃度為0.5%。則開始倒入試管A中的鹽水濃度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含鹽量為(30+10)×0.5%=0.2克,即從B中取出的10克中含鹽0.2克,則B的濃度為0.2÷10=2%,進而求出B中含鹽量為(20+10)×2%=0.6克,即從A中取出的10克中含鹽0.6克,可得A的濃度為0.6÷10=6%,進一步得出A中含鹽量為(10+10)×6%=1.2克,故開始倒入A中的鹽水濃度為1.2÷10=12%。故選A。112、8,9,18,23,30,()
A、33
B、36
C、41
D、48
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得1,9,5,7,再次作差得8,-4,2,構成公比為-0.5的等比數列,即所填數字為2×(-0.5)+7+30=36。故選B。113、[(9,6)42(7,7)][(7,3)40(6,4)][(8,2)()(3,2)]
A、30
B、32
C、34
D、36
【答案】:答案:A
解析:(9-6)×(7+7)=42,(7-3)×(6+4)=40,(8-2)×(3+2)=(30)。故選A。114、1,2,0,3,-1,4,()
A、-2
B、0
C、5
D、6
【答案】:答案:A
解析:奇數項1、0、-1、(-2)是公差為-1的等差數列;偶數項2、3、4是連續自然數。故選A。115、133/256,125/64,117/16,()
A、109/4
B、103/2
C、109/6
D、115/8
【答案】:答案:A
解析:分子133、125、117、(109)是公差為-8的等差數列,分母256、64、16、(4)是公比為1/4的等比數列。故選A。116、-56,25,-2,7,4,()
A、3
B、-12
C、-24
D、5
【答案】:答案:D
解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)項-第N項=-3[第N項-第(N+1)項](N≥2),即所填數字為4-=5。故選D。117、21,59,1117,2325,(),9541
A、3129
B、4733
C、6833
D、8233
【答案】:答案:B
解析:原數列各項可作如下拆分:[2|1],[5|9],[11|17],[23|25],[47|33],[95|41]。其中前半部分數字作差后構成等比數列,后半部分作差后構成等差數列。因此未知項為4733。故選B。118、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故選C。119、-1,6,25,62,()
A、123
B、87
C、150
D、109
【答案】:答案:A
解析:-1=1-2=13-2,6=8-2=23-2,25=27-2=33-2,62=64-2=43-2,53-2=125-2=123。故選A。120、小孫的口袋里有四顆糖,一顆巧克力味的,一顆蘋果味的,兩顆牛奶味的。小孫任意從口袋里取出兩顆糖,他看了看后說,其中一顆是牛奶味的。問小孫取出的另一顆糖也是牛奶味的可能性(概率)是多少?()
A、1/3
B、1/4
C、1/5
D、1/6
【答案】:答案:C
解析:兩顆都是牛奶味的糖只有一種情況,而其中至少一顆是牛奶味的糖共有5種情況:(牛奶味1、蘋果味),(牛奶味1、巧克力味),(牛奶味2、蘋果味),(牛奶味2、巧克力味),(牛奶味1、牛奶味2)。因此取出的另一顆糖也是牛奶味的概率為1/5。故選C。121、2,11,32,()
A、56
B、42
C、71
D、134
【答案】:答案:C
解析:觀察題干數列可得:2=13+1,11=23+3,32=33+5,()=43+7。故括號處應為71。故選C。122、41,59,32,68,72,()
A、28
B、36
C、40
D、48
【答案】:答案:A
解析:兩兩分組得到(41,59),(32,68),(72,()),發現組內做和均為100。故選A。123、2,6,18,54,()
A、186
B、162
C、194
D、196
【答案】:答案:B
解析:該數列是以3為公比的等比數列,故空缺項為:54×3=162。故選B。124、甲乙丙三人參加一項測試,三人的平均分為80,甲乙兩人的平均分為75,乙丙兩人的平均分為80,那么甲丙兩人的平均分為()。
A、70
B、75
C、80
D、85
【答案】:答案:D
解析:甲乙丙、甲乙的平均分分別為80、75,可知丙的分數大于80分;甲乙丙、乙丙的平均分分別為80、80,可知甲的分數為80分。則甲丙平均分大于80分。故選D。125、3,2,2,5,17,()
A、24
B、36
C、44
D、56
【答案】:答案:D
解析:依次將相鄰兩個數中后一個數減去前一個數得-1,0,3,12,再次作差得1,3,9,構成公比為3的等比數列,即所填數字為9×3+12+17=56。故選D。126、有100名學生,他們都訂閱甲、乙、丙三種雜志中的一種、兩種或三種。至少有多少名學生訂閱的雜志種類相同?()
A、13
B、14
C、15
D、16
【答案】:答案:C
解析:此題“訂閱雜志種類”就是分組的依據。訂閱一種雜志有3種情況,訂閱兩種雜志有3種情況,訂閱三種雜志有1種情況。因此,總共有7種情況,故至少有14+1=15名學生訂閱的雜志種類相同。故選C。127、接受采訪的100個大學生中,88人有手機,76人有電腦,其中有手機沒電腦的共15人,則這100個學生中有電腦但沒手機的共有多少人?()
A、25
B、15
C、5
D、3
【答案】:答案:D
解析:根據有手機沒電腦共15人,可得既有手機又有電腦(①部分)的人數為88-15=73人,則有電腦但沒手機(②部分)的人數為76-73=3人。故選D。128、5,17,21,25,()
A、30
B、31
C、32
D、34
【答案】:答案:B
解析:都為奇數。故選B。129、一人騎車上班需要50分鐘,途中騎了一段時間后自行車壞了,只好推車去上班,結果晚到10分鐘,如果騎車的速度比步行的速度快一倍,則步行了多少分鐘?()
A、20
B、34
C、40
D、50
【答案】:答案:A
解析:設騎車速度為2,步行速度為1,設步行時間為t分鐘,由題意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分鐘。故選A。130、水面上有三艘同向行駛的輪船,其中甲船的時速為63公里,乙、丙兩船的時速均為60公里,但由于故障,丙船每連續行駛30分鐘后必須停船2分鐘。早上10點,三船到達同一位置,問1小時后,甲、丙兩船最多相距多少公里?()
A、5
B、7
C、9
D、11
【答案】:答案:B
解析:1小時內,甲船行駛了63公里,丙船最多停車4分鐘,即行駛56分鐘,行駛路程為56公里。故最多相距7公里。故選B。131、4,12,8,10,()
A、6
B、8
C、9
D、24
【答案】:答案:C
解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故選C。132、甲、乙和丙三種不同濃度、不同規格的酒精溶液,每瓶重量分別為3公斤、7公斤和9公斤,如果將甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分別混合,得到的酒精濃度分別為50%,50%和60%。如果將三種酒精合各一瓶混合,得到的酒精中要加入多少公斤純凈水后,其濃度正好是50%?()
A、1
B、1.3
C、1.6
D、1.9
【答案】:答案:C
解析:甲乙各一瓶、甲丙各一瓶和乙丙各一瓶分別混合,相當于兩瓶甲、兩瓶乙、兩瓶丙混合,前兩種濃度都是50%,所以只需要加入適量水使得乙丙混合濃度由60%變為50%即可。設加水x,可將濃度為60%的酒精溶液溶度變為50%,即,解得x=3.2(公斤)。此時甲乙,甲丙和乙丙溶液各一瓶混合后濃度必然為50%。若甲、乙和丙各一瓶混合時濃度仍然為50%,則需加水為(公斤)。故選C。133、-1,3,-3,-3,-9,()
A、-9
B、-4
C、-14
D、-45
【答案】:答案:D
解析:題干倍數關系明顯,考慮作商。后項除以前項得到新數列:-3、-1、1、3,新數列為公差是2的等差數列,則新數列的下一項應為5,所求項為:-9×5=-45。故選D。134、A、B、C三個試管中各盛有10克、20克、30克水,把某種濃度的鹽水10克倒入A中,充分混合后從A中取出10克倒入B中,再充分混合后從B中取出10克倒入C中,最后得到C中鹽水的濃度為0.5%。則開始倒入試管A中的鹽水濃度是多少?()
A、12%
B、15%
C、18%
D、20%
【答案】:答案:A
解析:C中含鹽量為(30+10)×0.5%=0.2克,即從B中取出的10克中含鹽0.2克,則B的濃度為0.2÷10=2%,進而求出B中含鹽量為(20+10)×2%=0.6克,即從A中取出的10克中含鹽0.6克,可得A的濃度為0.6÷10=6%,進一步得出A中含鹽量為(10+10)×6%=1.2克,故開始倒入A中的鹽水濃度為1.2÷10=12%。故選A。135、5,7,4,6,4,6,()
A、4
B、5
C、6
D、7
【答案】:答案:B
解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,為奇數項是2偶數項為公差為1的等差數列,即所填數字為6+(-1)=5。故選B。136、1,3,2,6,11,19,()
A、24
B、36
C、29
D、38
【答案】:答案:B
解析:該數列為和數列,即前三項之和為第四項。故空缺處應為6+11+19=36。故選B。137、8,6,-4,-54,()
A、-118
B、-192
C、-320
D、-304
【答案】:答案:D
解析:依次將相鄰兩個數中后一個數減去前一個數得-2,-10,-50,構成公比為5的等比數列,即所填數字為-54+(-250)=-304。故選D。138、假設地球上新生成的資源的增長速度是一定的,照此推算,地球上的資源可供110億人生活90年,或者可供90億人生活210年。為了使人類能夠不斷繁衍,那么地球最多能養活多少億人?()
A、70
B、75
C、80
D、100
【答案】:答案:B
解析:設地球的原始資源可供x億人生存一年,每年增長的資源可供y億人生存一年,即x+90y=90×110,x+210y=210×90,兩式聯立得y=75,為了使人類能夠不斷繁衍,那么地球最多能養活75億人。故選B。139、團體操表演中,編號為1~100的學生按順序排成一列縱隊,編號為1的學生拿著紅、黃、藍三種顏色的旗幟,以后每隔2個學生有1人拿紅旗,每隔3個學生有1人拿藍旗,每隔6個學生有1人拿黃旗。問所有學生中有多少人拿兩種顏色以上的旗幟?()
A、13
B、14
C、15
D、16
【答案】:答案:B
解析:每隔n個人意為每(n+1)個人,則拿紅、藍、黃旗的周期分別為3、4、7。除編號為1的學生外還剩99人,同時拿紅、藍旗的編號為12(3和4的公倍數)的倍數,99÷12=8.25,有8人;同理,同時拿紅、黃旗的編號為21(3和7的公倍數)的倍數,99÷21=4.7,有4人;同時拿藍、黃旗的編號為28(4和7的公倍數)的倍數,99÷28=3.5,有3人;同時拿紅藍黃旗的編號為84(3、4和7的公倍數)的倍數,99÷84=1.1,有1人。拿兩種顏色以上的旗幟共有8+4+3+1-2×1=14(人)。故選B。140、某收藏家有三個古董鐘,時針都掉了,只剩下分針,而且都走得較快,每小時分別快2分鐘、6分鐘及12分鐘。如果在中午將這三個鐘的分針都調整指向鐘面的12點位置,多少小時后這3個鐘的分針會指在相同的分鐘位置?
A.24
B.26
C.28
D.30
【答案】:答案:D
解析:由題意可得:假設每小時快2分鐘、快6分鐘、快12分鐘的古董鐘分別為A鐘、B鐘、C鐘,則B鐘與A鐘速度差為分鐘/小時,已知整個鐘盤有60分鐘,即經過小時,B鐘的分針比A鐘的分針恰好多走一圈,且此時兩鐘分針重合,同理,C鐘與A鐘速度差
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司條線活動方案
- 公司紀念品策劃方案
- 公司精神文明活動方案
- 公司節日年度策劃方案
- 公司愛心衛生間活動方案
- 公司節約能源活動方案
- 公司果園維護活動方案
- 公司求婚驚喜策劃方案
- 公司核心競爭力活動方案
- 公司芽莊旅游策劃方案
- 2025年行政執法人員執法證考試必考多選題庫及答案(共250題)
- 2023年上海高中學業水平合格性考試歷史試卷真題(含答案詳解)
- 小學教育研究方法智慧樹知到期末考試答案章節答案2024年海南師范大學
- LX電動單梁懸掛說明書介紹
- 消防水池檢查記錄
- 航天器用j30jh系列微型矩形電連接器
- 拆除新建橋梁鉆孔樁專項施工方案
- 技工序列考評、評聘管理辦法
- 2022年哈爾濱建設發展集團有限責任公司招聘筆試題庫及答案解析
- 高壓旋噴樁施工記錄
- YY 0331-2006 脫脂棉紗布、脫脂棉粘膠混紡紗布的性能要求和試驗方法
評論
0/150
提交評論