




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省無錫市江陰市華士片2022年中考數學全真模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.關于的方程有實數根,則整數的最大值是()A.6 B.7 C.8 D.92.下列四個圖形分別是四屆國際數學家大會的會標,其中屬于中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個3.在△ABC中,若=0,則∠C的度數是()A.45° B.60° C.75° D.105°4.化簡:(a+)(1﹣)的結果等于()A.a﹣2 B.a+2 C. D.5.若分式在實數范圍內有意義,則實數的取值范圍是()A. B. C. D.6.如圖,I是?ABC的內心,AI向延長線和△ABC的外接圓相交于點D,連接BI,BD,DC下列說法中錯誤的一項是()A.線段DB繞點D順時針旋轉一定能與線段DC重合B.線段DB繞點D順時針旋轉一定能與線段DI熏合C.∠CAD繞點A順時針旋轉一定能與∠DAB重合D.線段ID繞點I順時針旋轉一定能與線段IB重合7.小宇媽媽上午在某水果超市買了16.5元錢的葡萄,晚上散步經過該水果超市時,發現同一批葡萄的價格降低了25%,小宇媽媽又買了16.5元錢的葡萄,結果恰好比早上多了0.5千克.若設早上葡萄的價格是x元/千克,則可列方程()A. B.C. D.8.函數y=的自變量x的取值范圍是()A.x≠2 B.x<2 C.x≥2 D.x>29.某班7名女生的體重(單位:kg)分別是35、37、38、40、42、42、74,這組數據的眾數是()A.74 B.44 C.42 D.4010.下列運算結果正確的是()A.3a2-a2=2 B.a2·a3=a6 C.(-a2)3=-a6 D.a2÷a2=a二、填空題(共7小題,每小題3分,滿分21分)11.如圖,△ABC內接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于點D,若☉O的半徑為2,則CD的長為_____12.若一個多邊形每個內角為140°,則這個多邊形的邊數是________.13.如圖,半圓O的直徑AB=2,弦CD∥AB,∠COD=90°,則圖中陰影部分的面積為_____.14.某學校要購買電腦,A型電腦每臺5000元,B型電腦每臺3000元,購買10臺電腦共花費34000元設購買A型電腦x臺,購買B型電腦y臺,則根據題意可列方程組為______.15.如圖,點A是直線y=﹣x與反比例函數y=的圖象在第二象限內的交點,OA=4,則k的值為_____.16.在20km越野賽中,甲乙兩選手的行程y(單位:km)隨時間x(單位:h)變化的圖象如圖所示,根據圖中提供的信息,有下列說法:①兩人相遇前,甲的速度小于乙的速度;②出發后1小時,兩人行程均為10km;③出發后1.5小時,甲的行程比乙多3km;④甲比乙先到達終點.其中正確的有_____個.17.如圖,有一個橫截面邊緣為拋物線的水泥門洞,門洞內的地面寬度為,兩側離地面高處各有一盞燈,兩燈間的水平距離為,則這個門洞的高度為_______.(精確到)三、解答題(共7小題,滿分69分)18.(10分)如圖,在平面直角坐標系中,四邊形的頂點是坐標原點,點在第一象限,點在第四象限,點在軸的正半軸上,且.(1)求點和點的坐標;(2)點是線段上的一個動點(點不與點重合),以每秒個單位的速度由點向點運動,過點的直線與軸平行,直線交邊或邊于點,交邊或邊于點,設點.運動時間為,線段的長度為,已知時,直線恰好過點.①當時,求關于的函數關系式;②點出發時點也從點出發,以每秒個單位的速度向點運動,點停止時點也停止.設的面積為,求與的函數關系式;③直接寫出②中的最大值是.19.(5分)如圖所示,一次函數y=kx+b與反比例函數y=的圖象交于A(2,4),B(﹣4,n)兩點.分別求出一次函數與反比例函數的表達式;過點B作BC⊥x軸,垂足為點C,連接AC,求△ACB的面積.20.(8分)如圖,在直角坐標系xOy中,直線與雙曲線相交于A(-1,a)、B兩點,BC⊥x軸,垂足為C,△AOC的面積是1.求m、n的值;求直線AC的解析式.21.(10分)為了提高服務質量,某賓館決定對甲、乙兩種套房進行星級提升,已知甲種套房提升費用比乙種套房提升費用少3萬元,如果提升相同數量的套房,甲種套房費用為625萬元,乙種套房費用為700萬元.(1)甲、乙兩種套房每套提升費用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費用最少?22.(10分)如圖,⊙O是△ABC的外接圓,BC為⊙O的直徑,點E為△ABC的內心,連接AE并延長交⊙O于D點,連接BD并延長至F,使得BD=DF,連接CF、BE.(1)求證:DB=DE;(2)求證:直線CF為⊙O的切線;(3)若CF=4,求圖中陰影部分的面積.23.(12分)閱讀材料:小明在學習二次根式后,發現一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:設(其中均為整數),則有.∴.這樣小明就找到了一種把部分的式子化為平方式的方法.請你仿照小明的方法探索并解決下列問題:當均為正整數時,若,用含m、n的式子分別表示,得=,=;(2)利用所探索的結論,找一組正整數,填空:+=(+)2;(3)若,且均為正整數,求的值.24.(14分)如圖,點A,B,C,D在同一條直線上,點E,F分別在直線AD的兩側,且AE=DF,∠A=∠D,AB=DC.(1)求證:四邊形BFCE是平行四邊形;(2)若AD=10,DC=3,∠EBD=60°,則BE=時,四邊形BFCE是菱形.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
方程有實數根,應分方程是一元二次方程與不是一元二次方程,兩種情況進行討論,當不是一元二次方程時,a-6=0,即a=6;當是一元二次方程時,有實數根,則△≥0,求出a的取值范圍,取最大整數即可.【詳解】當a-6=0,即a=6時,方程是-1x+6=0,解得x=;
當a-6≠0,即a≠6時,△=(-1)2-4(a-6)×6=201-24a≥0,解上式,得≈1.6,
取最大整數,即a=1.故選C.2、B【解析】
解:根據中心對稱的概念可得第一個圖形是中心對稱圖形,第二個圖形不是中心對稱圖形,第三個圖形是中心對稱圖形,第四個圖形不是中心對稱圖形,所以,中心對稱圖有2個.故選B.【點睛】本題考查中心對稱圖形的識別,掌握中心對稱圖形的概念是本題的解題關鍵.3、C【解析】
根據非負數的性質可得出cosA及tanB的值,繼而可得出A和B的度數,根據三角形的內角和定理可得出∠C的度數.【詳解】由題意,得
cosA=,tanB=1,
∴∠A=60°,∠B=45°,
∴∠C=180°-∠A-∠B=180°-60°-45°=75°.
故選C.4、B【解析】
解:原式====.故選B.考點:分式的混合運算.5、D【解析】
根據分式有意義的條件即可求出答案.【詳解】解:由分式有意義的條件可知:,,故選:.【點睛】本題考查分式有意義的條件,解題的關鍵是熟練運用分式有意義的條件,本題屬于基礎題型.6、D【解析】解:∵I是△ABC的內心,∴AI平分∠BAC,BI平分∠ABC,∴∠BAD=∠CAD,∠ABI=∠CBI,故C正確,不符合題意;∴=,∴BD=CD,故A正確,不符合題意;∵∠DAC=∠DBC,∴∠BAD=∠DBC.∵∠IBD=∠IBC+∠DBC,∠BID=∠ABI+∠BAD,∴∠DBI=∠DIB,∴BD=DI,故B正確,不符合題意.故選D.點睛:本題考查了三角形的內切圓和內心的,以及等腰三角形的判定與性質,同弧所對的圓周角相等.7、B【解析】分析:根據數量=,可知第一次買了千克,第二次買了,根據第二次恰好比第一次多買了0.5千克列方程即可.詳解:設早上葡萄的價格是x元/千克,由題意得,.故選B.點睛:本題考查了分式方程的實際應用,解題的關鍵是讀懂題意,找出列方程所用到的等量關系.8、D【解析】
根據被開放式的非負性和分母不等于零列出不等式即可解題.【詳解】解:∵函數y=有意義,∴x-20,即x>2故選D【點睛】本題考查了根式有意義的條件,屬于簡單題,注意分母也不能等于零是解題關鍵.9、C【解析】試題分析:眾數是這組數據中出現次數最多的數據,在這組數據中42出現次數最多,故選C.考點:眾數.10、C【解析】選項A,3a2-a2=2a2;選項B,a2·a3=a5;選項C,(-a2)3=-a6;選項D,a2÷a2=1.正確的只有選項C,故選C.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】
連接OA,OC,根據∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函數即可求得CD的長.【詳解】解:連接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案為.【點睛】本題考查了圓周角定理以及銳角三角函數,根據題意作出常用輔助線是解題關鍵.12、九【解析】
根據多邊形的內角和定理:180°?(n-2)進行求解即可.【詳解】由題意可得:180°(n?2)=140°n,解得n=9,故多邊形是九邊形.故答案為9.【點睛】本題考查了多邊形的內角和定理,解題的關鍵是熟練的掌握多邊形的內角和定理.13、【解析】解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S陰影=S扇形COD==.故答案為.14、【解析】試題解析:根據題意得:故答案為15、﹣4.【解析】
作AN⊥x軸于N,可設A(x,﹣x),在Rt△OAN中,由勾股定理得出方程,解方程求出x=﹣2,得出A(﹣2,2),即可求出k的值.【詳解】解:作AN⊥x軸于N,如圖所示:∵點A是直線y=﹣x與反比例函數y=的圖象在第二象限內的交點,∴可設A(x,﹣x)(x<0),在Rt△OAN中,由勾股定理得:x2+(﹣x)2=42,解得:x=﹣2,∴A(﹣2,2),代入y=得:k=﹣2×2=﹣4;故答案為﹣4.【點睛】本題考查了反比例函數與一次函數的圖象得交點、勾股定理、反比例函數解析式的求法;求出點A的坐標是解決問題的關鍵.16、1【解析】試題解析:在兩人出發后0.5小時之前,甲的速度小于乙的速度,0.5小時到1小時之間,甲的速度大于乙的速度,故①錯誤;由圖可得,兩人在1小時時相遇,行程均為10km,故②正確;甲的圖象的解析式為y=10x,乙AB段圖象的解析式為y=4x+6,因此出發1.5小時后,甲的路程為15千米,乙的路程為12千米,甲的行程比乙多3千米,故③正確;甲到達終點所用的時間較少,因此甲比乙先到達終點,故④正確.17、9.1【解析】
建立直角坐標系,得到二次函數,門洞高度即為二次函數的頂點的縱坐標【詳解】如圖,以地面為x軸,門洞中點為O點,畫出y軸,建立直角坐標系由題意可知各點坐標為A(-4,0)B(4,0)D(-3,4)設拋物線解析式為y=ax2+c(a≠0)把B、D兩點帶入解析式可得解析式為,則C(0,)所以門洞高度為m≈9.1m【點睛】本題考查二次函數的簡單應用,能夠建立直角坐標系解出二次函數解析式是本題關鍵三、解答題(共7小題,滿分69分)18、(1);(2)①;②當時,;當時,;當時,;③.【解析】
(1)根據等腰直角三角形的性質即可解決問題;(2)首先求出直線OA、AB、OC、BC的解析式.①求出R、Q的坐標,利用兩點間距離公式即可解決問題;②分三種情形分別求解即可解決問題;③利用②中的函數,利用配方法求出最值即可;【詳解】解:(1)由題意是等腰直角三角形,(2),線直的解析式為,直線的解析式時,直線恰好過點.,直線的解析式為,直線的解析式為①當時,,②當時,當時,當時,③當時,,時,的最大值為.當時,.時,的值最大,最大值為.當時,,時,的最大值為,綜上所述,最大值為故答案為.【點睛】本題考查四邊形綜合題、一次函數的應用、二次函數的應用、等腰直角三角形的性質等知識,解題的關鍵是學會構建一次函數或二次函數解決實際問題,屬于中考壓軸題.19、(1)反比例函數解析式為y=,一次函數解析式為y=x+2;(2)△ACB的面積為1.【解析】
(1)將點A坐標代入y=可得反比例函數解析式,據此求得點B坐標,根據A、B兩點坐標可得直線解析式;(2)根據點B坐標可得底邊BC=2,由A、B兩點的橫坐標可得BC邊上的高,據此可得.【詳解】解:(1)將點A(2,4)代入y=,得:m=8,則反比例函數解析式為y=,當x=﹣4時,y=﹣2,則點B(﹣4,﹣2),將點A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:,解得:,則一次函數解析式為y=x+2;(2)由題意知BC=2,則△ACB的面積=×2×1=1.【點睛】本題主要考查一次函數與反比例函數的交點問題,熟練掌握待定系數法求函數解析式及三角形的面積求法是解題的關鍵.20、(1)m=-1,n=-1;(2)y=-x+【解析】
(1)由直線與雙曲線相交于A(-1,a)、B兩點可得B點橫坐標為1,點C的坐標為(1,0),再根據△AOC的面積為1可求得點A的坐標,從而求得結果;(2)設直線AC的解析式為y=kx+b,由圖象過點A(-1,1)、C(1,0)根據待定系數法即可求的結果.【詳解】(1)∵直線與雙曲線相交于A(-1,a)、B兩點,∴B點橫坐標為1,即C(1,0)∵△AOC的面積為1,∴A(-1,1)將A(-1,1)代入,可得m=-1,n=-1;(2)設直線AC的解析式為y=kx+b∵y=kx+b經過點A(-1,1)、C(1,0)∴解得k=-,b=.∴直線AC的解析式為y=-x+.【點睛】本題考查了一次函數與反比例函數圖象的交點問題,此類問題是初中數學的重點,在中考中極為常見,熟練掌握待定系數法是解題關鍵.21、(1)甲、乙兩種套房每套提升費用為25、1萬元;(2)甲種套房提升2套,乙種套房提升30套時,y最小值為2090萬元.【解析】
(1)設甲種套房每套提升費用為x萬元,根據題意建立方程求出其解即可;(2)設甲種套房提升m套,那么乙種套房提升(80-m)套,根據條件建立不等式組求出其解就可以求出提升方案,再表示出總費用與m之間的函數關系式,根據一次函數的性質就可以求出結論.【詳解】(1)設乙種套房提升費用為x萬元,則甲種套房提升費用為(x﹣3)萬元,則,解得x=1.經檢驗:x=1是分式方程的解,答:甲、乙兩種套房每套提升費用為25、1萬元;(2)設甲種套房提升a套,則乙種套房提升(80﹣a)套,則2090≤25a+1(80﹣a)≤2096,解得48≤a≤2.∴共3種方案,分別為:方案一:甲種套房提升48套,乙種套房提升32套.方案二:甲種套房提升49套,乙種套房提升31套,方案三:甲種套房提升2套,乙種套房提升30套.設提升兩種套房所需要的費用為y萬元,則y=25a+1(80﹣a)=﹣3a+2240,∵k=﹣3,∴當a取最大值2時,即方案三:甲種套房提升2套,乙種套房提升30套時,y最小值為2090萬元.【點睛】本題考查了一次函數的性質的運用,列分式方程解實際問題的運用,列一元一次不等式組解實際問題的運用.解答時建立方程求出甲,乙兩種套房每套提升費用是關鍵,是解答第二問的必要過程.22、(1)證明見解析;(2)證明見解析;(3).【解析】
(1)欲證明DB=DE.,只要證明∠DBE=∠DEB;
(2)欲證明CF是⊙O的切線.,只要證明BC⊥CF即可;(3)根據S陰影部分S扇形S△OBD計算即可.【詳解】解:(1)∵E是△ABC的內心,∴∠BAE=∠CAE,∠EBA=∠EBC,∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,∴∠DBE=∠DEB,∴DB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中考歷史總復習九年級歷史上下冊基礎知識復習匯編
- 兒科健康教育培訓
- 物業管理條例核心要點解讀
- 地下水水文地質工程地質培訓重點基礎知識點
- 體系文件管控培訓
- 《企業結構層級》課件
- 沒簽用工協議書
- 運營權合同協議
- 轉讓寵物店合同協議
- 軟件服務勞務合同協議
- 基于STM32F103C8T6單片機的電動車智能充電樁計費系統設計
- 人工智能原理與技術智慧樹知到期末考試答案章節答案2024年同濟大學
- 在線網課知慧《數智時代的商業變革(山大(威海))》單元測試考核答案
- 中外比較文學研究專題智慧樹知到期末考試答案2024年
- CO2氣體保護焊-基本操作方法(焊接技能)
- (高清版)TDT 1012-2016 土地整治項目規劃設計規范
- 人工智能在水土保持中的應用
- 鄉村振興中的鄉村安全與穩定維護
- 營銷策劃 -菌小寶益生菌2023品牌介紹手冊
- 夫妻婚內房產贈與合同范本【專業版】
- 馬克思主義基本原理智慧樹知到課后章節答案2023年下湖南大學
評論
0/150
提交評論