山東青島嶗山區重點達標名校2021-2022學年中考數學四模試卷含解析_第1頁
山東青島嶗山區重點達標名校2021-2022學年中考數學四模試卷含解析_第2頁
山東青島嶗山區重點達標名校2021-2022學年中考數學四模試卷含解析_第3頁
山東青島嶗山區重點達標名校2021-2022學年中考數學四模試卷含解析_第4頁
山東青島嶗山區重點達標名校2021-2022學年中考數學四模試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東青島嶗山區重點達標名校2021-2022學年中考數學四模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點M和N,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結AP并延長交BC于點D,則下列說法中正確的個數是①AD是∠BAC的平分線;②∠ADC=60°;③點D在AB的中垂線上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.42.如圖的平面圖形繞直線l旋轉一周,可以得到的立體圖形是()A. B. C. D.3.如圖,扇形AOB中,半徑OA=2,∠AOB=120°,C是弧AB的中點,連接AC、BC,則圖中陰影部分面積是()A. B.C. D.4.若x>y,則下列式子錯誤的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.5.已知,用尺規作圖的方法在上確定一點,使,則符合要求的作圖痕跡是()A. B.C. D.6.某機構調查顯示,深圳市20萬初中生中,沉迷于手機上網的初中生約有16000人,則這部分沉迷于手機上網的初中生數量,用科學記數法可表示為()A.1.6×104人 B.1.6×105人 C.0.16×105人 D.16×103人7.的相反數是()A. B.2 C. D.8.一艘在南北航線上的測量船,于A點處測得海島B在點A的南偏東30°方向,繼續向南航行30海里到達C點時,測得海島B在C點的北偏東15°方向,那么海島B離此航線的最近距離是()(結果保留小數點后兩位)(參考數據:3≈1.732,2≈1.414)A.4.64海里B.5.49海里C.6.12海里D.6.21海里9.已知二次函數的圖象如圖所示,若,是這個函數圖象上的三點,則的大小關系是()A. B. C. D.10.如圖所示的幾何體的主視圖是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在△ABC中,∠ACB=90°,AC=BC=3,將△ABC折疊,使點A落在BC邊上的點D處,EF為折痕,若AE=2,則sin∠BFD的值為_____.12.在平面直角坐標系xOy中,位于第一象限內的點A(1,2)在x軸上的正投影為點A′,則cos∠AOA′=__.13.如圖,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC內部,且AD=CD,∠ADC=90°,連接BD,若△BCD的面積為10,則AD的長為_____.14.計算兩個兩位數的積,這兩個數的十位上的數字相同,個位上的數字之和等于1.53×57=3021,38×32=1216,84×86=7224,71×79=2.(1)你發現上面每個數的積的規律是:十位數字乘以十位數字加一的積作為結果的千位和百位,兩個個位數字相乘的積作為結果的,請寫出一個符合上述規律的算式.(2)設其中一個數的十位數字為a,個位數字為b,請用含a,b的算式表示這個規律.15.如圖,某數學興趣小組為了測量河對岸l1的兩棵古樹A、B之間的距離,他們在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹A、B之間的距離為_____m.16.二次函數的圖象與y軸的交點坐標是________.三、解答題(共8題,共72分)17.(8分)如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.求證:(1)△ABE≌△CDF;(2)四邊形BFDE是平行四邊形.18.(8分)已知矩形ABCD,AB=4,BC=3,以AB為直徑的半圓O在矩形ABCD的外部(如圖),將半圓O繞點A順時針旋轉α度(0°≤α≤180°)(1)半圓的直徑落在對角線AC上時,如圖所示,半圓與AB的交點為M,求AM的長;(2)半圓與直線CD相切時,切點為N,與線段AD的交點為P,如圖所示,求劣弧AP的長;(3)在旋轉過程中,半圓弧與直線CD只有一個交點時,設此交點與點C的距離為d,直接寫出d的取值范圍.19.(8分)如圖,在△ABC中,AB=AC,若將△ABC繞點C順時針旋轉180°得到△EFC,連接AF、BE.(1)求證:四邊形ABEF是平行四邊形;(2)當∠ABC為多少度時,四邊形ABEF為矩形?請說明理由.20.(8分)在平面直角坐標系xOy中,點M的坐標為,點N的坐標為,且,,我們規定:如果存在點P,使是以線段MN為直角邊的等腰直角三角形,那么稱點P為點M、N的“和諧點”.(1)已知點A的坐標為,①若點B的坐標為,在直線AB的上方,存在點A,B的“和諧點”C,直接寫出點C的坐標;②點C在直線x=5上,且點C為點A,B的“和諧點”,求直線AC的表達式.(2)⊙O的半徑為r,點為點、的“和諧點”,且DE=2,若使得與⊙O有交點,畫出示意圖直接寫出半徑r的取值范圍.21.(8分)計算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)201822.(10分)已知:如圖,在正方形ABCD中,點E、F分別是AB、BC邊的中點,AF與CE交點G,求證:AG=CG.23.(12分)定義:在三角形中,把一邊的中點到這條邊的高線的距離叫做這條邊的中垂距.例:如圖①,在△ABC中,D為邊BC的中點,AE⊥BC于E,則線段DE的長叫做邊BC的中垂距.(1)設三角形一邊的中垂距為d(d≥0).若d=0,則這樣的三角形一定是,推斷的數學依據是.(2)如圖②,在△ABC中,∠B=15°,AB=3,BC=8,AD為邊BC的中線,求邊BC的中垂距.(3)如圖③,在矩形ABCD中,AB=6,AD=1.點E為邊CD的中點,連結AE并延長交BC的延長線于點F,連結AC.求△ACF中邊AF的中垂距.24.為進一步打造“宜居重慶”,某區擬在新竣工的矩形廣場的內部修建一個音樂噴泉,要求音樂噴泉M到廣場的兩個入口A、B的距離相等,且到廣場管理處C的距離等于A和B之間距離的一半,A、B、C的位置如圖所示.請在答題卷的原圖上利用尺規作圖作出音樂噴泉M的位置.(要求:不寫已知、求作、作法和結論,保留作圖痕跡,必須用鉛筆作圖)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

①根據作圖的過程可知,AD是∠BAC的平分線.故①正確.②如圖,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分線,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正確.③∵∠1=∠B=10°,∴AD=BD.∴點D在AB的中垂線上.故③正確.④∵如圖,在直角△ACD中,∠2=10°,∴CD=AD.∴BC=CD+BD=AD+AD=AD,S△DAC=AC?CD=AC?AD.∴S△ABC=AC?BC=AC?AD=AC?AD.∴S△DAC:S△ABC.故④正確.綜上所述,正確的結論是:①②③④,,共有4個.故選D.2、B【解析】

根據面動成體以及長方形繞一邊所在直線旋轉一周得圓柱即可得答案.【詳解】由圖可知所給的平面圖形是一個長方形,長方形繞一邊所在直線旋轉一周得圓柱,故選B.【點睛】本題考查了點、線、面、體,熟記各種常見平面圖形旋轉得到的立體圖形是解題關鍵.3、A【解析】試題分析:連接AB、OC,ABOC,所以可將四邊形AOBC分成三角形ABC、和三角形AOB,進行求面積,求得四邊形面積是,扇形面積是S=πr2=,所以陰影部分面積是扇形面積減去四邊形面積即.故選A.4、B【解析】根據不等式的性質在不等式兩邊加(或減)同一個數(或式子),不等號的方向不變;不等式兩邊乘(或除以)同一個正數,不等號的方向不變;不等式兩邊乘(或除以)同一個負數,不等號的方向改變即可得出答案:A、不等式兩邊都減3,不等號的方向不變,正確;B、乘以一個負數,不等號的方向改變,錯誤;C、不等式兩邊都加3,不等號的方向不變,正確;D、不等式兩邊都除以一個正數,不等號的方向不變,正確.故選B.5、D【解析】試題分析:D選項中作的是AB的中垂線,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC.故選D.考點:作圖—復雜作圖.6、A【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>10時,n是正數;當原數的絕對值<1時,n是負數.【詳解】用科學記數法表示16000,應記作1.6×104,故選A.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.7、B【解析】

根據相反數的性質可得結果.【詳解】因為-2+2=0,所以﹣2的相反數是2,故選B.【點睛】本題考查求相反數,熟記相反數的性質是解題的關鍵.8、B【解析】

根據題意畫出圖如圖所示:作BD⊥AC,取BE=CE,根據三角形內角和和等腰三角形的性質得出BA=BE,AD=DE,設BD=x,Rt△ABD中,根據勾股定理得AD=DE=

3x,AB=BE=CE=2x,由AC=AD+DE+EC=2

3x+2x=30,解之即可得出答案.【詳解】根據題意畫出圖如圖所示:作BD⊥AC,取BE=CE,

∵AC=30,∠CAB=30°∠ACB=15°,

∴∠ABC=135°,

又∵BE=CE,

∴∠ACB=∠EBC=15°,

∴∠ABE=120°,

又∵∠CAB=30°

∴BA=BE,AD=DE,

設BD=x,

在Rt△ABD中,

∴AD=DE=

3x,AB=BE=CE=2x,

∴AC=AD+DE+EC=2

3x+2x=30,

∴x=153+1

=

15【點睛】本題考查了三角形內角和定理與等腰直角三角形的性質,解題的關鍵是熟練的掌握三角形內角和定理與等腰直角三角形的性質.9、A【解析】

先求出二次函數的對稱軸,結合二次函數的增減性即可判斷.【詳解】解:二次函數的對稱軸為直線,∵拋物線開口向下,∴當時,y隨x增大而增大,∵,∴故答案為:A.【點睛】本題考查了根據自變量的大小,比較函數值的大小,解題的關鍵是熟悉二次函數的增減性.10、A【解析】

找到從正面看所得到的圖形即可.【詳解】解:從正面可看到從左往右2列一個長方形和一個小正方形,故選A.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】分析:過點D作DGAB于點G.根據折疊性質,可得AE=DE=2,AF=DF,CE=1,在Rt△DCE中,由勾股定理求得,所以DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,由銳角三角函數求得,;設AF=DF=x,則FG=,在Rt△DFG中,根據勾股定理得方程=,解得,從而求得.的值詳解:如圖所示,過點D作DGAB于點G.根據折疊性質,可知△AEF△DEF,∴AE=DE=2,AF=DF,CE=AC-AE=1,在Rt△DCE中,由勾股定理得,∴DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,,;設AF=DF=x,得FG=AB-AF-GB=,在Rt△DFG中,,即=,解得,∴==.故答案為.點睛:主要考查了翻折變換的性質、勾股定理、銳角三件函數的定義;解題的關鍵是靈活運用折疊的性質、勾股定理、銳角三角函數的定義等知識來解決問題.12、.【解析】

依據點A(1,2)在x軸上的正投影為點A′,即可得到A'O=1,AA'=2,AO=,進而得出cos∠AOA′的值.【詳解】如圖所示,點A(1,2)在x軸上的正投影為點A′,∴A'O=1,AA'=2,∴AO=,∴cos∠AOA′=,故答案為:.【點睛】本題主要考查了平行投影以及平面直角坐標系,過已知點向坐標軸作垂線,然后求出相關的線段長,是解決這類問題的基本方法和規律.13、5【解析】

作輔助線,構建全等三角形和高線DH,設CM=a,根據等腰直角三角形的性質和三角函數表示AC和AM的長,根據三角形面積表示DH的長,證明△ADG≌△CDH(AAS),可得DG=DH=MG=作輔助線,構建全等三角形和高線DH,設CM=a,根據等腰直角三角形的性質和三角函數表示AC和AM的長,根據三角形面積表示DH的長,證明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根據AM=AG+MG,列方程可得結論.,AG=CH=a+,根據AM=AG+MG,列方程可得結論.【詳解】解:過D作DH⊥BC于H,過A作AM⊥BC于M,過D作DG⊥AM于G,設CM=a,∵AB=AC,∴BC=2CM=2a,∵tan∠ACB=2,∴=2,∴AM=2a,由勾股定理得:AC=a,S△BDC=BC?DH=10,?2a?DH=10,DH=,∵∠DHM=∠HMG=∠MGD=90°,∴四邊形DHMG為矩形,∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,∵∠ADC=90°=∠ADG+∠CDG,∴∠ADG=∠CDH,在△ADG和△CDH中,∵,∴△ADG≌△CDH(AAS),∴DG=DH=MG=,AG=CH=a+,∴AM=AG+MG,即2a=a++,a2=20,在Rt△ADC中,AD2+CD2=AC2,∵AD=CD,∴2AD2=5a2=100,∴AD=5或?5(舍),故答案為5.【點睛】本題考查了等腰三角形的判定與性質、全等三角形的判定與性質、三角形面積的計算;證明三角形全等得出AG=CH是解決問題的關鍵,并利用方程的思想解決問題.14、(1)十位和個位,44×46=2024;(2)10a(a+1)+b(1﹣b)【解析】分析:(1)、根據題意得出其一般性的規律,從而得出答案;(2)、利用代數式表示出其一般規律得出答案.詳解:(1)由已知等式知,每個數的積的規律是:十位數字乘以十位數字加一的積作為結果的千位和百位,兩個個位數字相乘的積作為結果的十位和個位,例如:44×46=2024,(2)(1a+b)(1a+1﹣b)=10a(a+1)+b(1﹣b).點睛:本題主要考查的是規律的發現與整理,屬于基礎題型.找出一般性的規律是解決這個問題的關鍵.15、(50﹣).【解析】

過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得MN=AB.【詳解】解:如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N,則AB=MN,AM=BN.在直角△ACM,∵∠ACM=45°,AM=50m,∴CM=AM=50m.∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN===(m),∴MN=CM?CN=50?(m).則AB=MN=(50?)m.故答案是:(50?).【點睛】本題考查了解直角三角形的應用.解決此問題的關鍵在于正確理解題意的基礎上建立數學模型,把實際問題轉化為數學問題.16、【解析】

求出自變量x為1時的函數值即可得到二次函數的圖象與y軸的交點坐標.【詳解】把代入得:,∴該二次函數的圖象與y軸的交點坐標為,故答案為.【點睛】本題考查了二次函數圖象上點的坐標特征,在y軸上的點的橫坐標為1.三、解答題(共8題,共72分)17、(1)見解析;(2)見解析;【解析】

(1)由四邊形ABCD是平行四邊形,根據平行四邊形的對邊相等,對角相等的性質,即可證得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四邊形ABCD是平行四邊形,根據平行四邊形對邊平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可證得DE=BF.根據對邊平行且相等的四邊形是平行四邊形,即可證得四邊形BFDE是平行四邊形.【詳解】證明:(1)∵四邊形ABCD是平行四邊形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四邊形ABCD是平行四邊形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四邊形BFDE是平行四邊形.18、(2)AM=;(2)=π;(3)4-≤d<4或d=4+.【解析】

(2)連接B′M,則∠B′MA=90°,在Rt△ABC中,利用勾股定理可求出AC的長度,由∠B=∠B′MA=90°、∠BCA=∠MAB′可得出△ABC∽△AMB′,根據相似三角形的性質可求出AM的長度;(2)連接OP、ON,過點O作OG⊥AD于點G,則四邊形DGON為矩形,進而可得出DG、AG的長度,在Rt△AGO中,由AO=2、AG=2可得出∠OAG=60°,進而可得出△AOP為等邊三角形,再利用弧長公式即可求出劣弧AP的長;(3)由(2)可知:△AOP為等邊三角形,根據等邊三角形的性質可求出OG、DN的長度,進而可得出CN的長度,畫出點B′在直線CD上的圖形,在Rt△AB′D中(點B′在點D左邊),利用勾股定理可求出B′D的長度進而可得出CB′的長度,再結合圖形即可得出:半圓弧與直線CD只有一個交點時d的取值范圍.【詳解】(2)在圖2中,連接B′M,則∠B′MA=90°.在Rt△ABC中,AB=4,BC=3,∴AC=2.∵∠B=∠B′MA=90°,∠BCA=∠MAB′,∴△ABC∽△AMB′,∴=,即=,∴AM=;(2)在圖3中,連接OP、ON,過點O作OG⊥AD于點G,∵半圓與直線CD相切,∴ON⊥DN,∴四邊形DGON為矩形,∴DG=ON=2,∴AG=AD-DG=2.在Rt△AGO中,∠AGO=90°,AO=2,AG=2,∴∠AOG=30°,∠OAG=60°.又∵OA=OP,∴△AOP為等邊三角形,∴==π.(3)由(2)可知:△AOP為等邊三角形,∴DN=GO=OA=,∴CN=CD+DN=4+.當點B′在直線CD上時,如圖4所示,在Rt△AB′D中(點B′在點D左邊),AB′=4,AD=3,∴B′D==,∴CB′=4-.∵AB′為直徑,∴∠ADB′=90°,∴當點B′在點D右邊時,半圓交直線CD于點D、B′.∴當半圓弧與直線CD只有一個交點時,4-≤d<4或d=4+.【點睛】本題考查了相似三角形的判定與性質、矩形的性質、等邊三角形的性質、勾股定理以及切線的性質,解題的關鍵是:(2)利用相似三角形的性質求出AM的長度;(2)通過解直角三角形找出∠OAG=60°;(3)依照題意畫出圖形,利用數形結合求出d的取值范圍.19、(1)證明見解析(2)當∠ABC=60°時,四邊形ABEF為矩形【解析】

(1)根據旋轉得出CA=CE,CB=CF,根據平行四邊形的判定得出即可;(2)根據等邊三角形的判定得出△ABC是等邊三角形,求出AE=BF,根據矩形的判定得出即可.【詳解】(1)∵將△ABC繞點C順時針旋轉180°得到△EFC,∴△ABC≌△EFC,∴CA=CE,CB=CF,∴四邊形ABEF是平行四邊形;(2)當∠ABC=60°時,四邊形ABEF為矩形,理由是:∵∠ABC=60°,AB=AC,∴△ABC是等邊三角形,∴AB=AC=BC.∵CA=CE,CB=CF,∴AE=BF.∵四邊形ABEF是平行四邊形,∴四邊形ABEF是矩形.【點睛】本題考查了旋轉的性質和矩形的判定、平行四邊形的判定、等邊三角形的性質和判定等知識點,能綜合運用知識點進行推理是解答此題的關鍵.20、(1)①點C坐標為或;②y=x+2或y=-x+3;(2)或【解析】

(1)①根據“和諧點”的定義即可解決問題;②首先求出點C坐標,再利用待定系數法即可解決問題;(2)分兩種情形畫出圖形即可解決問題.【詳解】(1)①如圖1.觀察圖象可知滿足條件的點C坐標為C(1,5)或C'(3,5);②如圖2.由圖可知,B(5,3).∵A(1,3),∴AB=3.∵△ABC為等腰直角三角形,∴BC=3,∴C1(5,7)或C2(5,﹣1).設直線AC的表達式為y=kx+b(k≠0),當C1(5,7)時,,∴,∴y=x+2,當C2(5,﹣1)時,,∴,∴y=﹣x+3.綜上所述:直線AC的表達式是y=x+2或y=﹣x+3.(2)分兩種情況討論:①當點F在點E左側時:連接OD.則OD=,∴.②當點F在點E右側時:連接OE,OD.∵E(1,2),D(1,3),∴OE=,OD=,∴.綜上所述:或.【點睛】本題考查了一次函數綜合題、圓的有關知識、等腰直角三角形的判定和性質、“和諧點”的定義等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題,學會用分類討論的首先思考問題,屬于中考壓軸題.21、-1【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論