




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022學年廣州市花都區花山中考考前最后一卷數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.2.九年級學生去距學校10km的博物館參觀,一部分學生騎自行車先走,過了20min后,其余學生乘汽車出發,結果他們同時到達.已知汽車的速度是騎車學生速度的2倍,求騎車學生的速度.設騎車學生的速度為xkm/h,則所列方程正確的是()A. B.C. D.3.實數的相反數是()A. B. C. D.4.在Rt△ABC中,∠C=90°,AC=5,AB=13,則sinA的值為()A.512 B.513 C.125.下列運算中,正確的是()A.(a3)2=a5 B.(﹣x)2÷x=﹣xC.a3(﹣a)2=﹣a5 D.(﹣2x2)3=﹣8x66.如圖,一艘海輪位于燈塔P的南偏東45°方向,距離燈塔60nmile的A處,它沿正北方向航行一段時間后,到達位于燈塔P的北偏東30°方向上的B處,這時,B處與燈塔P的距離為()A.60nmile B.60nmile C.30nmile D.30nmile7.下列各數中,最小的數是A. B. C.0 D.8.如圖,將△ABC繞點C(0,-1)旋轉180°得到△A′B′C,設點A的坐標為(a,b),則點A′的坐標為()A.(-a,-b) B.(-a,-b-1) C.(-a,-b+1) D.(-a,-b-2)9.中國古代人民很早就在生產生活中發現了許多有趣的數學問題,其中《孫子算經》中有個問題:今有三人共車,二車空;二人共車,九人步,問人與車各幾何?這道題的意思是:今有若干人乘車,每三人乘一車,最終剩余2輛車,若每2人共乘一車,最終剩余9個人無車可乘,問有多少人,多少輛車?如果我們設有輛車,則可列方程()A. B.C. D.10.拋物線經過第一、三、四象限,則拋物線的頂點必在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題(本大題共6個小題,每小題3分,共18分)11.某書店把一本新書按標價的九折出售,仍可獲利20%,若該書的進價為21元,則標價為___________元.12.北京奧運會國家體育場“鳥巢”的建筑面積為258000平方米,那么258000用科學記數法可表示為.13.如圖,CE是?ABCD的邊AB的垂直平分線,垂足為點O,CE與DA的延長線交于點E.連接AC,BE,DO,DO與AC交于點F,則下列結論:①四邊形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:1;④S四邊形AFOE:S△COD=2:1.其中正確的結論有_____.(填寫所有正確結論的序號)14.如圖,二次函數y=ax2+bx+c(a≠0)的圖象與軸相交于點A、B,若其對稱軸為直線x=2,則OB–OA的值為_______.15.若不等式組1-x≤2,x>m有解,則16.如圖,AB是半徑為2的⊙O的弦,將沿著弦AB折疊,正好經過圓心O,點C是折疊后的上一動點,連接并延長BC交⊙O于點D,點E是CD的中點,連接AC,AD,EO.則下列結論:①∠ACB=120°,②△ACD是等邊三角形,③EO的最小值為1,其中正確的是_____.(請將正確答案的序號填在橫線上)三、解答題(共8題,共72分)17.(8分)閱讀下列材料,解答下列問題:材料1.把一個多項式化成幾個整式的積的形式,這種變形叫做因式分解,也叫分解因式.如果把整式的乘法看成一個變形過程,那么多項式的因式分解就是它的逆過程.公式法(平方差公式、完全平方公式)是因式分解的一種基本方法.如對于二次三項式a2+2ab+b2,可以逆用乘法公式將它分解成(a+b)2的形式,我們稱a2+2ab+b2為完全平方式.但是對于一般的二次三項式,就不能直接應用完全平方了,我們可以在二次三項式中先加上一項,使其配成完全平方式,再減去這項,使整個式子的值不變,于是有:x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a)材料2.因式分解:(x+y)2+2(x+y)+1解:將“x+y”看成一個整體,令x+y=A,則原式=A2+2A+1=(A+1)2再將“A”還原,得:原式=(x+y+1)2.上述解題用到的是“整體思想”,整體思想是數學解題中常見的一種思想方法,請你解答下列問題:(1)根據材料1,把c2﹣6c+8分解因式;(2)結合材料1和材料2完成下面小題:①分解因式:(a﹣b)2+2(a﹣b)+1;②分解因式:(m+n)(m+n﹣4)+3.18.(8分)如圖,是的直徑,是圓上一點,弦于點,且.過點作的切線,過點作的平行線,兩直線交于點,的延長線交的延長線于點.(1)求證:與相切;(2)連接,求的值.19.(8分)為評估九年級學生的體育成績情況,某校九年級500名學生全部參加了“中考體育模擬考試”,隨機抽取了部分學生的測試成績作為樣本,并繪制出如下兩幅不完整的統計表和頻數分布直方圖:成績x分人數頻率25≤x<3040.0830≤x<3580.1635≤x<40a0.3240≤x<45bc45≤x<50100.2(1)求此次抽查了多少名學生的成績;(2)通過計算將頻數分布直方圖補充完整;(3)若測試成績不低于40分為優秀,請估計本次測試九年級學生中成績優秀的人數.20.(8分)如圖,MN是一條東西方向的海岸線,在海岸線上的A處測得一海島在南偏西32°的方向上,向東走過780米后到達B處,測得海島在南偏西37°的方向,求小島到海岸線的距離.(參考數據:tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)21.(8分)在矩形ABCD中,AD=2AB,E是AD的中點,一塊三角板的直角頂點與點E重合,兩直角邊與AB,BC分別交于點M,N,求證:BM=CN.22.(10分)如圖,直線與第一象限的一支雙曲線交于A、B兩點,A在B的左邊.(1)若=4,B(3,1),求直線及雙曲線的解析式:并直接寫出不等式的解集;(2)若A(1,3),第三象限的雙曲線上有一點C,接AC、BC,設直線BC解析式為;當AC⊥AB時,求證:k為定值.23.(12分)如圖,△ABC中,AB=AC=4,D、E分別為AB、AC的中點,連接CD,過E作EF∥DC交BC的延長線于F;(1)求證:DE=CF;(2)若∠B=60°,求EF的長.24.如圖,在四邊形ABCD中,AB=AD,BC=DC,AC、BD相交于點O,點E在AO上,且OE=OC.求證:∠1=∠2;連結BE、DE,判斷四邊形BCDE的形狀,并說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
根據軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】解:A、是軸對稱圖形,也是中心對稱圖形,故錯誤;B、是中心對稱圖形,不是軸對稱圖形,故正確;C、是軸對稱圖形,也是中心對稱圖形,故錯誤;D、是軸對稱圖形,也是中心對稱圖形,故錯誤.故選B.【點睛】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.2、C【解析】試題分析:設騎車學生的速度為xkm/h,則汽車的速度為2xkm/h,由題意得,.故選C.考點:由實際問題抽象出分式方程.3、D【解析】
根據相反數的定義求解即可.【詳解】的相反數是-,故選D.【點睛】本題考查了實數的性質,在一個數的前面加上負號就是這個數的相反數.4、C【解析】
先根據勾股定理求出BC得長,再根據銳角三角函數正弦的定義解答即可.【詳解】如圖,根據勾股定理得,BC=AB∴sinA=BCAB故選C.【點睛】本題考查了銳角三角函數的定義及勾股定理,熟知銳角三角函數正弦的定義是解決問題的關鍵.5、D【解析】
根據同底數冪的除法、乘法的運算方法,冪的乘方與積的乘方的運算方法,以及單項式乘單項式的方法,逐項判定即可.【詳解】∵(a3)2=a6,∴選項A不符合題意;∵(-x)2÷x=x,∴選項B不符合題意;∵a3(-a)2=a5,∴選項C不符合題意;∵(-2x2)3=-8x6,∴選項D符合題意.故選D.【點睛】此題主要考查了同底數冪的除法、乘法的運算方法,冪的乘方與積的乘方的運算方法,以及單項式乘單項式的方法,要熟練掌握.6、B【解析】
如圖,作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=60nmile,∴PE=AE=×60=nmile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=nmile.故選B.7、A【解析】
應明確在數軸上,從左到右的順序,就是數從小到大的順序,據此解答.【詳解】解:因為在數軸上-3在其他數的左邊,所以-3最小;故選A.【點睛】此題考負數的大小比較,應理解數字大的負數反而小.8、D【解析】
設點A的坐標是(x,y),根據旋轉變換的對應點關于旋轉中心對稱,再根據中點公式列式求解即可.【詳解】根據題意,點A、A′關于點C對稱,
設點A的坐標是(x,y),
則
=0,
=-1,
解得x=-a,y=-b-2,
∴點A的坐標是(-a,-b-2).
故選D.【點睛】本題考查了利用旋轉進行坐標與圖形的變化,根據旋轉的性質得出點A、A′關于點C成中心對稱是解題的關鍵9、A【解析】
根據每三人乘一車,最終剩余2輛車,每2人共乘一車,最終剩余1個人無車可乘,進而表示出總人數得出等式即可.【詳解】設有x輛車,則可列方程:
3(x-2)=2x+1.
故選:A.【點睛】此題主要考查了由實際問題抽象出一元一次方程,正確表示總人數是解題關鍵.10、A【解析】
根據二次函數圖象所在的象限大致畫出圖形,由此即可得出結論.【詳解】∵二次函數圖象只經過第一、三、四象限,∴拋物線的頂點在第一象限.故選A.【點睛】本題考查了二次函數的性質以及二次函數的圖象,大致畫出函數圖象,利用數形結合解決問題是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、28【解析】設標價為x元,那么0.9x-21=21×20%,x=28.12、2.58×1【解析】科學記數法就是將一個數字表示成(a×10的n次冪的形式),其中1≤|a|<10,n表示整數.即從左邊第一位開始,在首位非零的后面加上小數點,再乘以10的n次冪.258000=2.58×1.13、①②④.【解析】
根據菱形的判定方法、平行線分線段成比例定理、直角三角形斜邊中線的性質一一判斷即可.【詳解】∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵EC垂直平分AB,∴OA=OB=AB=DC,CD⊥CE,∵OA∥DC,∴=,∴AE=AD,OE=OC,∵OA=OB,OE=OC,∴四邊形ACBE是平行四邊形,∵AB⊥EC,∴四邊形ACBE是菱形,故①正確,∵∠DCE=90°,DA=AE,∴AC=AD=AE,∴∠ACD=∠ADC=∠BAE,故②正確,∵OA∥CD,∴,∴,故③錯誤,設△AOF的面積為a,則△OFC的面積為2a,△CDF的面積為4a,△AOC的面積=△AOE的面積=1a,∴四邊形AFOE的面積為4a,△ODC的面積為6a∴S四邊形AFOE:S△COD=2:1.故④正確.故答案是:①②④.【點睛】此題考查平行四邊形的性質、菱形的判定和性質、平行線分線段成比例定理、等高模型等知識,解題的關鍵是靈活運用所學知識解決問題,學會利用參數解決問題.14、4【解析】試題分析:設OB的長度為x,則根據二次函數的對稱性可得:點B的坐標為(x+2,0),點A的坐標為(2-x,0),則OB-OA=x+2-(x-2)=4.點睛:本題主要考查的就是二次函數的性質.如果二次函數與x軸的兩個交點坐標為(,0)和(,0),則函數的對稱軸為直線:x=.在解決二次函數的題目時,我們一定要注意區分點的坐標和線段的長度之間的區別,如果點在x的正半軸,則點的橫坐標就是線段的長度,如果點在x的負半軸,則點的橫坐標的相反數就是線段的長度.15、m<2【解析】分析:解出不等式組的解集,然后根據解集的取值范圍來確定m的取值范圍.解答:解:由1-x≤2得x≥-1又∵x>m根據同大取大的原則可知:若不等式組的解集為x≥-1時,則m≤-1若不等式組的解集為x≥m時,則m≥-1.故填m≤-1或m≥-1.點評:本題是已知不等式組的解集,求不等式中另一未知數的問題.可以先將另一未知數當作已知處理,求出解集再利用不等式組的解集的確定原則來確定未知數的取值范圍.16、①②【解析】
根據折疊的性質可知,結合垂徑定理、三角形的性質、同圓或等圓中圓周角與圓心的性質等可以判斷①②是否正確,EO的最小值問題是個難點,這是一個動點問題,只要把握住E在什么軌跡上運動,便可解決問題.【詳解】如圖1,連接OA和OB,作OF⊥AB.
由題知:沿著弦AB折疊,正好經過圓心O
∴OF=OA=OB
∴∠AOF=∠BOF=60°
∴∠AOB=120°
∴∠ACB=120°(同弧所對圓周角相等)
∠D=∠AOB=60°(同弧所對的圓周角是圓心角的一半)
∴∠ACD=180°-∠ACB=60°
∴△ACD是等邊三角形(有兩個角是60°的三角形是等邊三角形)
故,①②正確
下面研究問題EO的最小值是否是1
如圖2,連接AE和EF
∵△ACD是等邊三角形,E是CD中點
∴AE⊥BD(三線合一)
又∵OF⊥AB
∴F是AB中點
即,EF是△ABE斜邊中線
∴AF=EF=BF
即,E點在以AB為直徑的圓上運動.
所以,如圖3,當E、O、F在同一直線時,OE長度最小
此時,AE=EF,AE⊥EF
∵⊙O的半徑是2,即OA=2,OF=1
∴AF=(勾股定理)
∴OE=EF-OF=AF-OF=-1
所以,③不正確
綜上所述:①②正確,③不正確.
故答案是:①②.【點睛】考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.也考查了垂徑定理.三、解答題(共8題,共72分)17、(1)(c-4)(c-2);(2)①(a-b+1)2;②(m+n-1)(m+n-3).【解析】
(1)根據材料1,可以對c2-6c+8分解因式;(2)①根據材料2的整體思想可以對(a-b)2+2(a-b)+1分解因式;②根據材料1和材料2可以對(m+n)(m+n-4)+3分解因式.【詳解】(1)c2-6c+8=c2-6c+32-32+8=(c-3)2-1=(c-3+1)(c-3+1)=(c-4)(c-2);(2)①(a-b)2+2(a-b)+1設a-b=t,則原式=t2+2t+1=(t+1)2,則(a-b)2+2(a-b)+1=(a-b+1)2;②(m+n)(m+n-4)+3設m+n=t,則t(t-4)+3=t2-4t+3=t2-4t+22-22+3=(t-2)2-1=(t-2+1)(t-2-1)=(t-1)(t-3),則(m+n)(m+n-4)+3=(m+n-1)(m+n-3).【點睛】本題考查因式分解的應用,解題的關鍵是明確題意,可以根據材料中的例子對所求的式子進行因式分解.18、(1)見解析;(2)【解析】
(1)連接,,易證為等邊三角形,可得,由等腰三角形的性質及角的和差關系可得∠1=30°,由于可得∠DCG=∠CDA=∠60°,即可求出∠OCG=90°,可得與相切;(2)作于點.設,則,.根據兩組對邊互相平行可證明四邊形為平行四邊形,由可證四邊形為菱形,由(1)得,從而可求出、的值,從而可知的長度,利用銳角三角函數的定義即可求出的值.【詳解】(1)連接,.∵是的直徑,弦于點,∴,.∵,∴.∴為等邊三角形.∴,∠DAE=∠EAC=30°,∵OA=OC,∴∠OAC=∠OCA=30°,∴∠1=∠DCA-∠OCA=30°,∵,∴∠DCG=∠CDA=∠60°,∴∠OCG=∠DCG+∠1=60°+30°=90°,∴.∴與相切.(2)連接EF,作于點.設,則,.∵與相切,∴.又∵,∴.又∵,∴四邊形為平行四邊形.∵,∴四邊形為菱形.∴,.由(1)得,∴,.∴.∵在中,,∴.【點睛】本題考查圓的綜合問題,涉及切線的判定與性質,菱形的判定與性質,等邊三角形的性質及銳角三角函數,考查學生綜合運用知識的能力,熟練掌握相關性質是解題關鍵.19、(1)50;(2)詳見解析;(3)220.【解析】
(1)利用1組的人數除以1組的頻率可求此次抽查了多少名學生的成績;(2)根據總數乘以3組的頻率可求a,用50減去其它各組的頻數即可求得b的值,再用1減去其它各組的頻率即可求得c的值,即可把頻數分布直方圖補充完整;(3)先得到成績優秀的頻率,再乘以500即可求解.【詳解】解:(1)4÷0.08=50(名).答:此次抽查了50名學生的成績;(2)a=50×0.32=16(名),b=50﹣4﹣8﹣16﹣10=12(名),c=1﹣0.08﹣0.16﹣0.32﹣0.2=0.24,如圖所示:(3)500×(0.24+0.2)=500×0.44=220(名).答:本次測試九年級學生中成績優秀的人數是220名.【點睛】本題主要考查數據的收集、處理以及統計圖表。20、10【解析】試題分析:如圖:過點C作CD⊥AB于點D,在Rt△ACD中,利用∠ACD的正切可得AD=0.625CD,同樣在Rt△BCD中,可得BD=0.755CD,再根據AB=BD-CD=780,代入進行求解即可得.試題解析:如圖:過點C作CD⊥AB于點D,由已知可得:∠ACD=32°,∠BCD=37°,在Rt△ACD中,∠ADC=90°,∴AD=CD·tan∠ACD=CD·tan32°=0.625CD,在Rt△BCD中,∠BDC=90°,∴BD=CD·tan∠BCD=CD·tan37°=0.755CD,∵AB=BD-CD=780,∴0.755CD-0.625CD=780,∴CD=10,答:小島到海岸線的距離是10米.【點睛】本題考查了解直角三角形的應用,正確添加輔助線構造直角三角形、根據圖形靈活選用三角函數進行求解是關鍵.21、證明見解析.【解析】試題分析:作于點F,然后證明≌,從而求出所所以BM與CN的長度相等.試題解析:在矩形ABCD中,AD=2AB,E是AD的中點,作EF⊥BC于點F,則有AB=AE=EF=FC,∴∠AEM=∠FEN,在Rt△AME和Rt△FNE中,∵E為AB的中點,∴AB=CF,∠AEM=∠FEN,AE=EF,∠MAE=∠NFE,∴Rt△AME≌Rt
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 畢業設計商業計劃書
- 跨端口安全防護的動態響應機制設計-洞察闡釋
- 安全教育課試題及答案
- 乘公交車安全試題及答案
- 小學五年級下冊音樂教案
- 如何根據臉型選擇適合的發型
- 2025合同協議書填寫范本
- 非煤礦山開采權出讓合同詳盡范文
- 醫療機構代理記賬與醫療行業政策解讀服務協議
- 2025【范本】物業服務合同協議
- 風險評估理論與應用
- 護理安全用藥制度
- 《普通邏輯》第五版課后習題答案
- 中國藥妝行業發展現狀、藥妝市場政策解讀及未來發展趨勢分析圖
- 焊接車間作業流程看板
- 圍堰施工監理實施細則
- 老年癡呆護理
- 車間精益改善總結報告課件(PPT 19頁)
- 中小學教育懲戒規則(試行)全文解讀ppt課件
- YY∕T 1797-2021 內窺鏡手術器械 腔鏡切割吻合器及組件
- 《冬病夏治工作指南》
評論
0/150
提交評論