




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省哈爾濱市順邁重點達標名校2022年中考數學猜題卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分別以點A,B為圓心,大于線段AB長度的一半為半徑作弧,相交于點E,F,過點E,F作直線EF,交AB于點D,連接CD,則△ACD的周長為()A.13 B.17 C.18 D.252.實數a、b、c在數軸上的位置如圖所示,則代數式|c﹣a|﹣|a+b|的值等于()A.c+b B.b﹣c C.c﹣2a+b D.c﹣2a﹣b3.關于x的一元二次方程x2﹣2x+k+2=0有實數根,則k的取值范圍在數軸上表示正確的是()A. B.C. D.4.拋物線y=x2+2x+3的對稱軸是()A.直線x=1 B.直線x=-1C.直線x=-2 D.直線x=25.從3、1、-2這三個數中任取兩個不同的數作為P點的坐標,則P點剛好落在第四象限的概率是()A. B. C. D.6.若代數式有意義,則實數x的取值范圍是()A.x=0 B.x=3 C.x≠0 D.x≠37.如圖,平面直角坐標中,點A(1,2),將AO繞點A逆時針旋轉90°,點O的對應點B恰好落在雙曲線y=kxA.2 B.3 C.4 D.68.|﹣3|的值是()A.3 B. C.﹣3 D.﹣9.下列各組數中,互為相反數的是()A.﹣2與2 B.2與2 C.3與 D.3與310.我國古代數學名著《孫子算經》中記載了一道題,大意是:100匹馬恰好拉了100片瓦,已知1匹大馬能拉3片瓦,3匹小馬能拉1片瓦,問有多少匹大馬、多少匹小馬?若設大馬有匹,小馬有匹,則可列方程組為()A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.二次根式中,x的取值范圍是.12.如圖,點A,B在反比例函數y=(x>0)的圖象上,點C,D在反比例函數y=(k>0)的圖象上,AC∥BD∥y軸,已知點A,B的橫坐標分別為1,2,△OAC與△ABD的面積之和為,則k的值為_____.13.如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標是(3,0),點C的坐標是(0,-3),動點P在拋物線上.b=_________,c=_________,點B的坐標為_____________;(直接填寫結果)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.14.有下列等式:①由a=b,得5﹣2a=5﹣2b;②由a=b,得ac=bc;③由a=b,得;④由,得3a=2b;⑤由a2=b2,得a=b.其中正確的是_____.15.閱讀下面材料:在數學課上,老師提出如下問題:小亮的作法如下:老師說:“小亮的作法正確”請回答:小亮的作圖依據是______.16.如圖,在中,,,,,,點在上,交于點,交于點,當時,________.17.按照一定規律排列依次為,…..按此規律,這列數中的第100個數是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,AB、CD是⊙O的直徑,DF、BE是弦,且DF=BE,求證:∠D=∠B.19.(5分)請你僅用無刻度的直尺在下面的圖中作出△ABC的邊AB上的高CD.如圖①,以等邊三角形ABC的邊AB為直徑的圓,與另兩邊BC、AC分別交于點E、F.如圖②,以鈍角三角形ABC的一短邊AB為直徑的圓,與最長的邊AC相交于點E.20.(8分)小明準備用一塊矩形材料剪出如圖所示的四邊形ABCD(陰影部分),做成要制作的飛機的一個機翼,請你根據圖中的數據幫小明計算出CD的長度.(結果保留根號).21.(10分)如圖,四邊形ABCD的四個頂點分別在反比例函數y=mx與y=n(1)當m=1,n=20時.①若點P的縱坐標為2,求直線AB的函數表達式.②若點P是BD的中點,試判斷四邊形ABCD的形狀,并說明理由.(2)四邊形ABCD能否成為正方形?若能,求此時m,n之間的數量關系;若不能,試說明理由.22.(10分)如圖,一次函數y=k1x+b(k1≠0)與反比例函數的圖象交于點A(-1,2),B(m,-1).(1)求一次函數與反比例函數的解析式;(2)在x軸上是否存在點P(n,0),使△ABP為等腰三角形,請你直接寫出P點的坐標.23.(12分)如圖所示,在平面直角坐標系xOy中,正方形OABC的邊長為2cm,點A、C分別在y軸的負半軸和x軸的正半軸上,拋物線y=ax2+bx+c經過點A、B和D(4,-2(1)求拋物線的表達式.(2)如果點P由點A出發沿AB邊以2cm/s的速度向點B運動,同時點Q由點B出發,沿BC邊以1cm/s的速度向點C運動,當其中一點到達終點時,另一點也隨之停止運動.設S=PQ2(cm2).①試求出S與運動時間t之間的函數關系式,并寫出t的取值范圍;②當S取54(3)在拋物線的對稱軸上求點M,使得M到D、A的距離之差最大,求出點M的坐標.24.(14分)為落實“綠水青山就是金山銀山”的發展理念,某市政部門招標一工程隊負責在山腳下修建一座水庫的土方施工任務.該工程隊有兩種型號的挖掘機,已知3臺型和5臺型挖掘機同時施工一小時挖土165立方米;4臺型和7臺型挖掘機同時施工一小時挖土225立方米.每臺型挖掘機一小時的施工費用為300元,每臺型挖掘機一小時的施工費用為180元.分別求每臺型,型挖掘機一小時挖土多少立方米?若不同數量的型和型挖掘機共12臺同時施工4小時,至少完成1080立方米的挖土量,且總費用不超過12960元.問施工時有哪幾種調配方案,并指出哪種調配方案的施工費用最低,最低費用是多少元?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根據勾股定理求得AB=13.根據題意可知,EF為線段AB的垂直平分線,在Rt△ABC中,根據直角三角形斜邊的中線等于斜邊的一半可得CD=AD=AB,所以△ACD的周長為AC+CD+AD=AC+AB=5+13=18.故選C.2、A【解析】
根據數軸得到b<a<0<c,根據有理數的加法法則,減法法則得到c-a>0,a+b<0,根據絕對值的性質化簡計算.【詳解】由數軸可知,b<a<0<c,∴c-a>0,a+b<0,則|c-a|-|a+b|=c-a+a+b=c+b,故選A.【點睛】本題考查的是實數與數軸,絕對值的性質,能夠根據數軸比較實數的大小,掌握絕對值的性質是解題的關鍵.3、C【解析】
由一元二次方程有實數根可知△≥0,即可得出關于k的一元一次不等式,解之即可得出k的取值范圍.【詳解】∵關于x的一元二次方程x2?2x+k+2=0有實數根,∴△=(?2)2?4(k+2)?0,解得:k??1,在數軸上表示為:故選C.【點睛】本題考查了一元二次方程根的判別式.根據一元二次方程根的情況利用根的判別式列出不等式是解題的關鍵.4、B【解析】
根據拋物線的對稱軸公式:計算即可.【詳解】解:拋物線y=x2+2x+3的對稱軸是直線故選B.【點睛】此題考查的是求拋物線的對稱軸,掌握拋物線的對稱軸公式是解決此題的關鍵.5、B【解析】解:畫樹狀圖得:∵共有6種等可能的結果,其中(1,-2),(3,-2)點落在第四項象限,∴P點剛好落在第四象限的概率==.故選B.點睛:本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件,熟記各象限內點的符號特點是解題的關鍵.6、D【解析】分析:根據分式有意義的條件進行求解即可.詳解:由題意得,x﹣3≠0,解得,x≠3,故選D.點睛:此題考查了分式有意義的條件.注意:分式有意義的條件事分母不等于零,分式無意義的條件是分母等于零.7、B【解析】
作AC⊥y軸于C,ADx軸,BD⊥y軸,它們相交于D,有A點坐標得到AC=1,OC=1,由于AO繞點A逆時針旋轉90°,點O的對應B點,所以相當是把△AOC繞點A逆時針旋轉90°得到△ABD,根據旋轉的性質得AD=AC=1,BD=OC=1,原式可得到B點坐標為(2,1),然后根據反比例函數圖象上點的坐標特征計算k的值.【詳解】作AC⊥y軸于C,AD⊥x軸,BD⊥y軸,它們相交于D,如圖,∵A點坐標為(1,1),∴AC=1,OC=1.∵AO繞點A逆時針旋轉90°,點O的對應B點,即把△AOC繞點A逆時針旋轉90°得到△ABD,∴AD=AC=1,BD=OC=1,∴B點坐標為(2,1),∴k=2×1=2.故選B.【點睛】本題考查了反比例函數圖象上點的坐標特征:反比例函數y=kx(k為常數,k≠0)的圖象是雙曲線,圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k8、A【解析】分析:根據絕對值的定義回答即可.詳解:負數的絕對值等于它的相反數,故選A.點睛:考查絕對值,非負數的絕對值等于它本身,負數的絕對值等于它的相反數.9、A【解析】
根據只有符號不同的兩數互為相反數,可直接判斷.【詳解】-2與2互為相反數,故正確;2與2相等,符號相同,故不是相反數;3與互為倒數,故不正確;3與3相同,故不是相反數.故選:A.【點睛】此題主要考查了相反數,關鍵是觀察特點是否只有符號不同,比較簡單.10、B【解析】
設大馬有匹,小馬有匹,根據題意可得等量關系:大馬數+小馬數=100,大馬拉瓦數+小馬拉瓦數=100,根據等量關系列出方程即可.【詳解】解:設大馬有匹,小馬有匹,由題意得:,故選:B.【點睛】本題主要考查的是由實際問題抽象出二元一次方程組,關鍵是正確理解題意,找出題目中的等量關系,列出方程組.二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】根據二次根式被開方數必須是非負數的條件,要使在實數范圍內有意義,必須.12、1【解析】
過A作x軸垂線,過B作x軸垂線,求出A(1,1),B(2,),C(1,k),D(2,),將面積進行轉換S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB進而求解.【詳解】解:過A作x軸垂線,過B作x軸垂線,點A,B在反比例函數y=(x>0)的圖象上,點A,B的橫坐標分別為1,2,∴A(1,1),B(2,),∵AC∥BD∥y軸,∴C(1,k),D(2,),∵△OAC與△ABD的面積之和為,,S△ABD=S梯形AMND﹣S梯形AAMNB,,∴k=1,故答案為1.【點睛】本題考查反比例函數的性質,k的幾何意義.能夠將三角形面積進行合理的轉換是解題的關鍵.13、(1),,(-1,0);(2)存在P的坐標是或;(1)當EF最短時,點P的坐標是:(,)或(,)【解析】
(1)將點A和點C的坐標代入拋物線的解析式可求得b、c的值,然后令y=0可求得點B的坐標;(2)分別過點C和點A作AC的垂線,將拋物線與P1,P2兩點先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A與拋物線的交點坐標即可;(1)連接OD.先證明四邊形OEDF為矩形,從而得到OD=EF,然后根據垂線段最短可求得點D的縱坐標,從而得到點P的縱坐標,然后由拋物線的解析式可求得點P的坐標.【詳解】解:(1)∵將點A和點C的坐標代入拋物線的解析式得:,解得:b=﹣2,c=﹣1,∴拋物線的解析式為.∵令,解得:,,∴點B的坐標為(﹣1,0).故答案為﹣2;﹣1;(﹣1,0).(2)存在.理由:如圖所示:①當∠ACP1=90°.由(1)可知點A的坐標為(1,0).設AC的解析式為y=kx﹣1.∵將點A的坐標代入得1k﹣1=0,解得k=1,∴直線AC的解析式為y=x﹣1,∴直線CP1的解析式為y=﹣x﹣1.∵將y=﹣x﹣1與聯立解得,(舍去),∴點P1的坐標為(1,﹣4).②當∠P2AC=90°時.設AP2的解析式為y=﹣x+b.∵將x=1,y=0代入得:﹣1+b=0,解得b=1,∴直線AP2的解析式為y=﹣x+1.∵將y=﹣x+1與聯立解得=﹣2,=1(舍去),∴點P2的坐標為(﹣2,5).綜上所述,P的坐標是(1,﹣4)或(﹣2,5).(1)如圖2所示:連接OD.由題意可知,四邊形OFDE是矩形,則OD=EF.根據垂線段最短,可得當OD⊥AC時,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中點.又∵DF∥OC,∴DF=OC=,∴點P的縱坐標是,∴,解得:x=,∴當EF最短時,點P的坐標是:(,)或(,).14、①②④【解析】①由a=b,得5﹣2a=5﹣2b,根據等式的性質先將式子兩邊同時乘以-2,再將等式兩邊同時加上5,等式仍成立,所以本選項正確,②由a=b,得ac=bc,根據等式的性質,等式兩邊同時乘以相同的式子,等式仍成立,所以本選項正確,③由a=b,得,根據等式的性質,等式兩邊同時除以一個不為0的數或式子,等式仍成立,因為可能為0,所以本選項不正確,④由,得3a=2b,根據等式的性質,等式兩邊同時乘以相同的式子6c,等式仍成立,所以本選項正確,⑤因為互為相反數的平方也相等,由a2=b2,得a=b,或a=-b,所以本選項錯誤,故答案為:①②④.15、兩點確定一條直線;同圓或等圓中半徑相等【解析】
根據尺規作圖的方法,兩點之間確定一條直線的原理即可解題.【詳解】解:∵兩點之間確定一條直線,CD和AB都是圓的半徑,∴AB=CD,依據是兩點確定一條直線;同圓或等圓中半徑相等.【點睛】本題考查了尺規作圖:一條線段等于已知線段,屬于簡單題,熟悉尺規作圖方法是解題關鍵.16、1【解析】
如圖作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=1:4:5,設PQ=4x,則AQ=1x,AP=5x,BQ=2x,可得2x+1x=1,求出x即可解決問題.【詳解】如圖,作PQ⊥AB于Q,PR⊥BC于R.∵∠PQB=∠QBR=∠BRP=90°,∴四邊形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ.∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=1:4:5,設PQ=4x,則AQ=1x,AP=5x,BQ=2x,∴2x+1x=1,∴x=,∴AP=5x=1.故答案為:1.【點睛】本題考查了相似三角形的判定和性質、勾股定理、矩形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造相似三角形解決問題,屬于中考常考題型.17、【解析】
根據按一定規律排列的一列數依次為…,可得第n個數為,據此可得第100個數.【詳解】由題意,數列可改寫成,…,則后一個數的分子比前一個數的法則大2,后一個數的分母比前一個數的分母大3,∴第n個數為=,∴這列數中的第100個數為=;故答案為:.【點睛】本題考查數字類規律,解題的關鍵是讀懂題意,掌握數字類規律基本解題方法.三、解答題(共7小題,滿分69分)18、證明見解析.【解析】
根據在同圓中等弦對的弧相等,AB、CD是⊙O的直徑,則,由FD=EB,得,,由等量減去等量仍是等量得:,即,由等弧對的圓周角相等,得∠D=∠B.【詳解】解:方法(一)證明:∵AB、CD是⊙O的直徑,∴.∵FD=EB,∴.∴.即.∴∠D=∠B.方法(二)證明:如圖,連接CF,AE.∵AB、CD是⊙O的直徑,∴∠F=∠E=90°(直徑所對的圓周角是直角).∵AB=CD,DF=BE,∴Rt△DFC≌Rt△BEA(HL).∴∠D=∠B.【點睛】本題利用了在同圓中等弦對的弧相等,等弧對的弦,圓周角相等,等量減去等量仍是等量求解.19、(1)詳見解析;(2)詳見解析.【解析】
(1)連接AE、BF,找到△ABC的高線的交點,據此可得CD;(2)延長CB交圓于點F,延長AF、EB交于點G,連接CG,延長AB交CG于點D,據此可得.【詳解】(1)如圖所示,CD即為所求;(2)如圖,CD即為所求.【點睛】本題主要考查作圖-基本作圖,解題的關鍵熟練掌握圓周角定理和三角形的三條高線交于一點的性質.20、CD的長度為17﹣17cm.【解析】
在直角三角形中用三角函數求出FD,BE的長,而FC=AE=AB+BE,而CD=FC-FD,從而得到答案.【詳解】解:由題意,在Rt△BEC中,∠E=90°,∠EBC=60°,∴∠BCE=30°,tan30°=,∴BE=ECtan30°=51×=17(cm);∴CF=AE=34+BE=(34+17)cm,在Rt△AFD中,∠FAD=45°,∴∠FDA=45°,∴DF=AF=EC=51cm,則CD=FC﹣FD=34+17﹣51=17﹣17,答:CD的長度為17﹣17cm.【點睛】本題主要考查了在直角三角形中三角函數的應用,解本題的要點在于求出FC與FD的長度,即可求出答案.21、(1)①直線AB的解析式為y=﹣12【解析】分析:(1)①先確定出點A,B坐標,再利用待定系數法即可得出結論;②先確定出點D坐標,進而確定出點P坐標,進而求出PA,PC,即可得出結論;(2)先確定出B(1,m4),進而得出A(1-t,m4+t),即:(1-t)(m4詳解:(1)①如圖1,∵m=1,∴反比例函數為y=4x∴B(1,1),當y=2時,∴2=4x∴x=2,∴A(2,2),設直線AB的解析式為y=kx+b,∴2k+b=∴k=∴直線AB的解析式為y=-12②四邊形ABCD是菱形,理由如下:如圖2,由①知,B(1,1),∵BD∥y軸,∴D(1,5),∵點P是線段BD的中點,∴P(1,3),當y=3時,由y=4x得,x=4由y=20x得,x=20∴PA=1-43=83,PC=203∴PA=PC,∵PB=PD,∴四邊形ABCD為平行四邊形,∵BD⊥AC,∴四邊形ABCD是菱形;(2)四邊形ABCD能是正方形,理由:當四邊形ABCD是正方形,∴PA=PB=PC=PD,(設為t,t≠0),當x=1時,y=mx=m∴B(1,m4∴A(1-t,m4∴(1-t)(m4∴t=1-m4∴點D的縱坐標為m4+2t=m4+2(1-m4∴D(1,8-m4∴1(8-m4∴m+n=2.點睛:此題是反比例函數綜合題,主要考查了待定系數法,平行四邊形的判定,菱形的判定和性質,正方形的性質,判斷出四邊形ABCD是平行四邊形是解本題的關鍵.22、(1)反比例函數的解析式為;一次函數的解析式為y=-x+1;(2)滿足條件的P點的坐標為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【解析】
(1)將A點代入求出k2,從而求出反比例函數方程,再聯立將B點代入即可求出一次函數方程.(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根據坐標距離公式計算即可.【詳解】(1)把A(-1,2)代入,得到k2=-2,∴反比例函數的解析式為.∵B(m,-1)在上,∴m=2,由題意,解得:,∴一次函數的解析式為y=-x+1.(2)滿足條件的P點的坐標為(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【點睛】本題考查一次函數圖像與性質和反比例函數的圖像和性質,解題的關鍵是待定系數法,分三種情況討論.23、(1)拋物線的解析式為:y=1(2)①S與運動時間t之間的函數關系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②存在.R點的坐標是(3,﹣32(3)M的坐標為(1,﹣83【解析】試題分析:(1)設拋物線的解析式是y=ax2+bx+c,求出A、B、D的坐標代入即可;(2)①由勾股定理即可求出;②假設存在點R,可構成以P、B、R、Q為頂點的平行四邊形,求出P、Q的坐標,再分為兩種種情況:A、B、C即可根據平行四邊形的性質求出R的坐標;(3)A關于拋物線的對稱軸的對稱點為B,過B、D的直線與拋物線的對稱軸的交點為所求M,求出直線BD的解析式,把拋物線的對稱軸x=1代入即可求出M的坐標.試題解析:(1)設拋物線的解析式是y=ax2+bx+c,∵正方形的邊長2,∴B的坐標(2,﹣2)A點的坐標是(0,﹣2),把A(0,﹣2),B(2,﹣2),D(4,﹣23)代入得:c=-2解得a=16,b=﹣1∴拋物線的解析式為:y=1答:拋物線的解析式為:y=1(2)①由圖象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).答:S與運動時間t之間的函數關系式是S=5t2﹣8t+4,t的取值范圍是0≤t≤1;②假設存在點R,可構成以P、B、R、Q為頂點的平行四邊形.∵S=5t2﹣8t+4(0≤t≤1),∴當S=54時,5t2﹣8t+4=54
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基層醫療綜合改革的策略及實施路徑
- 歷史故事:近代中國政治制度變遷探究
- 現代漢語知識入門:漢字筆畫與字形演變
- 秋天的公園寫景類作文10篇
- 正方形、長方形面積計算方法講解
- 《孟德爾遺傳定律的解析與應用:高中生物教案》
- 高一語文課例:《文學之美與文言句式鑒賞》
- 音樂英語:歌曲欣賞與詞匯學習教案
- 2022學年上海交大附中高一(下)期末政治試題及答案
- 如何通過英語語法教學培養學生的學習興趣
- 《未來三年個人規劃》課件
- 《癌痛與癌痛治療》課件
- 湖北省華中師大第一附中2024屆物理高二第二學期期末達標檢測試題含解析
- 經空氣傳播疾病醫院感染預防與控制規范課件
- 2024年四川廣安愛眾股份有限公司招聘筆試參考題庫含答案解析
- 冠心病合并糖尿病血脂管理
- PDCA循環在我院靜脈用藥調配中心用藥錯誤管理中的應用靜配中心質量持續改進案例
- 精神病患者攻擊行為預防
- 《議程設置理論》課件
- 二單元稅率利率復習課
- GB/Z 43281-2023即時檢驗(POCT)設備監督員和操作員指南
評論
0/150
提交評論