




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山西省(晉城地區)重點名校2022年中考數學最后一模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在射線AB上順次取兩點C,D,使AC=CD=1,以CD為邊作矩形CDEF,DE=2,將射線AB繞點A沿逆時針方向旋轉,旋轉角記為α(其中0°<α<45°),旋轉后記作射線AB′,射線AB′分別交矩形CDEF的邊CF,DE于點G,H.若CG=x,EH=y,則下列函數圖象中,能反映y與x之間關系的是()A. B. C. D.2.如圖,是在直角坐標系中圍棋子擺出的圖案,若再擺放一黑一白兩枚棋子,使9枚棋子組成的圖案既是軸對稱圖形又是中心對稱圖形,則這兩枚棋子的坐標是()A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)3.如圖,經過測量,C地在A地北偏東46°方向上,同時C地在B地北偏西63°方向上,則∠C的度數為()A.99° B.109° C.119° D.129°4.拋物線y=x2+2x+3的對稱軸是()A.直線x=1 B.直線x=-1C.直線x=-2 D.直線x=25.如圖:A、B、C、D四點在一條直線上,若AB=CD,下列各式表示線段AC錯誤的是()A.AC=AD﹣CD B.AC=AB+BCC.AC=BD﹣AB D.AC=AD﹣AB6.如圖,由矩形和三角形組合而成的廣告牌緊貼在墻面上,重疊部分(陰影)的面積是4m2,廣告牌所占的面積是30m2(厚度忽略不計),除重疊部分外,矩形剩余部分的面積比三角形剩余部分的面積多2m2,設矩形面積是xm2,三角形面積是ym2,則根據題意,可列出二元一次方程組為()A. B. C. D.7.桌面上有A、B兩球,若要將B球射向桌面任意一邊的黑點,則B球一次反彈后擊中A球的概率是()A. B. C. D.8.中國古代在利用“計里畫方”(比例縮放和直角坐標網格體系)的方法制作地圖時,會利用測桿、水準儀和照板來測量距離.在如圖所示的測量距離AB的示意圖中,記照板“內芯”的高度為EF,觀測者的眼睛(圖中用點C表示)與BF在同一水平線上,則下列結論中,正確的是()A. B. C. D.9.如圖所示的四個圖案是四國冬季奧林匹克運動會會徽圖案上的一部分圖形,其中為軸對稱圖形的是()A. B. C. D.10.下列圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.直角梯形B.平行四邊形C.矩形D.正五邊形二、填空題(共7小題,每小題3分,滿分21分)11.如圖,將矩形ABCD繞點C沿順時針方向旋轉90°到矩形A′B′CD′的位置,AB=2,AD=4,則陰影部分的面積為_____.12.如圖,⊙M的半徑為2,圓心M(3,4),點P是⊙M上的任意一點,PA⊥PB,且PA、PB與x軸分別交于A、B兩點,若點A、點B關于原點O對稱,則AB的最小值為_____.13.的系數是_____,次數是_____.14.如圖,P(m,m)是反比例函數在第一象限內的圖象上一點,以P為頂點作等邊△PAB,使AB落在x軸上,則△POB的面積為_____.15.因式分解:=___.16.分解因式:(x2﹣2x)2﹣(2x﹣x2)=______.17.在平面直角坐標系中,點A1,A2,A3和B1,B2,B3分別在直線y=和x軸上,△OA1B1,△B1A2B2,△B2A3B3都是等腰直角三角形.則A3的坐標為_______.
.三、解答題(共7小題,滿分69分)18.(10分)山西特產專賣店銷售核桃,其進價為每千克40元,按每千克60元出售,平均每天可售出100千克,后來經過市場調查發現,單價每降低2元,則平均每天的銷售可增加20千克,若該專賣店銷售這種核桃要想平均每天獲利2240元,請回答:每千克核桃應降價多少元?在平均每天獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應按原售價的幾折出售?19.(5分)在平面直角坐標系xOy中,二次函數y=ax2+bx+c(a≠0)的圖象經過A(0,4),B(2,0),C(-2,0)三點.(1)求二次函數的表達式;(2)在x軸上有一點D(-4,0),將二次函數的圖象沿射線DA方向平移,使圖象再次經過點B.①求平移后圖象頂點E的坐標;②直接寫出此二次函數的圖象在A,B兩點之間(含A,B兩點)的曲線部分在平移過程中所掃過的面積.20.(8分)某家電銷售商場電冰箱的銷售價為每臺1600元,空調的銷售價為每臺1400元,每臺電冰箱的進價比每臺空調的進價多300元,商場用9000元購進電冰箱的數量與用7200元購進空調數量相等.(1)求每臺電冰箱與空調的進價分別是多少?(2)現在商場準備一次購進這兩種家電共100臺,設購進電冰箱x臺,這100臺家電的銷售利潤為Y元,要求購進空調數量不超過電冰箱數量的2倍,總利潤不低于16200元,請分析合理的方案共有多少種?(3)實際進貨時,廠家對電冰箱出廠價下調K(0<K<150)元,若商場保持這兩種家電的售價不變,請你根據以上信息及(2)中條件,設計出使這100臺家電銷售總利潤最大的進貨方案.21.(10分)如圖,在平面直角坐標系中,一次函數的圖象分別交x軸、y軸于A、B兩點,與反比例函數的圖象交于C、D兩點.已知點C的坐標是(6,-1),D(n,3).求m的值和點D的坐標.求的值.根據圖象直接寫出:當x為何值時,一次函數的值大于反比例函數的值?22.(10分)對于某一函數給出如下定義:若存在實數p,當其自變量的值為p時,其函數值等于p,則稱p為這個函數的不變值.在函數存在不變值時,該函數的最大不變值與最小不變值之差q稱為這個函數的不變長度.特別地,當函數只有一個不變值時,其不變長度q為零.例如:下圖中的函數有0,1兩個不變值,其不變長度q等于1.(1)分別判斷函數y=x-1,y=x-1,y=x2有沒有不變值?如果有,直接寫出其不變長度;(2)函數y=2x2-bx.①若其不變長度為零,求b的值;②若1≤b≤3,求其不變長度q的取值范圍;(3)記函數y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數圖象記為G2,函數G的圖象由G1和G2兩部分組成,若其不變長度q滿足0≤q≤3,則m的取值范圍為.23.(12分)已知反比例函數y=kx的圖象過點(1)試求該反比例函數的表達式;(2)M(m,n)是反比例函數圖象上的一動點,其中0<m<3,過點M作直線MB∥x軸,交y軸于點B;過點A作直線AC∥y軸,交x軸于點C,交直線MB于點D.當四邊形OADM的面積為6時,請判斷線段BM與DM的大小關系,并說明理由.24.(14分)某商場計劃購進一批甲、乙兩種玩具,已知一件甲種玩具的進價與一件乙種玩具的進價的和為40元,用90元購進甲種玩具的件數與用150元購進乙種玩具的件數相同.求每件甲種、乙種玩具的進價分別是多少元?商場計劃購進甲、乙兩種玩具共48件,其中甲種玩具的件數少于乙種玩具的件數,商場決定此次進貨的總資金不超過1000元,求商場共有幾種進貨方案?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】∵四邊形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴,∵AC=CD=1,∴AD=2,∴,∴DH=2x,∵DE=2,∴y=2﹣2x,∵0°<α<45°,∴0<x<1,故選D.【點睛】本題主要考查了旋轉、相似等知識,解題的關鍵是根據已知得出△ACG∽△ADH.2、A【解析】
首先根據各選項棋子的位置,進而結合軸對稱圖形和中心對稱圖形的性質判斷得出即可.【詳解】解:A、當擺放黑(3,3),白(3,1)時,此時是軸對稱圖形,也是中心對稱圖形,故此選項正確;B、當擺放黑(3,1),白(3,3)時,此時是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;C、當擺放黑(1,5),白(5,5)時,此時不是軸對稱圖形也不是中心對稱圖形,故此選項錯誤;D、當擺放黑(3,2),白(3,3)時,此時是軸對稱圖形不是中心對稱圖形,故此選項錯誤.故選:A.【點睛】此題主要考查了坐標確定位置以及軸對稱圖形與中心對稱圖形的性質,利用已知確定各點位置是解題關鍵.3、B【解析】
方向角是從正北或正南方向到目標方向所形成的小于90°的角,根據平行線的性質求得∠ACF與∠BCF的度數,∠ACF與∠BCF的和即為∠C的度數.【詳解】解:由題意作圖如下∠DAC=46°,∠CBE=63°,由平行線的性質可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故選B.【點睛】本題考查了方位角和平行線的性質,熟練掌握方位角的概念和平行線的性質是解題的關鍵.4、B【解析】
根據拋物線的對稱軸公式:計算即可.【詳解】解:拋物線y=x2+2x+3的對稱軸是直線故選B.【點睛】此題考查的是求拋物線的對稱軸,掌握拋物線的對稱軸公式是解決此題的關鍵.5、C【解析】
根據線段上的等量關系逐一判斷即可.【詳解】A、∵AD-CD=AC,∴此選項表示正確;B、∵AB+BC=AC,∴此選項表示正確;C、∵AB=CD,∴BD-AB=BD-CD,∴此選項表示不正確;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此選項表示正確.故答案選:C.【點睛】本題考查了線段上兩點間的距離及線段的和、差的知識,解題的關鍵是找出各線段間的關系.6、A【解析】
根據題意找到等量關系:①矩形面積+三角形面積﹣陰影面積=30;②(矩形面積﹣陰影面積)﹣(三角形面積﹣陰影面積)=4,據此列出方程組.【詳解】依題意得:.故選A.【點睛】考查了由實際問題抽象出二元一次方程組.根據實際問題中的條件列方程組時,要注意抓住題目中的一些關鍵性詞語,找出等量關系,列出方程組.7、B【解析】試題解析:由圖可知可以瞄準的點有2個..∴B球一次反彈后擊中A球的概率是.故選B.8、B【解析】分析:由平行得出相似,由相似得出比例,即可作出判斷.詳解:∵EF∥AB,∴△CEF∽△CAB,∴,故選B.點睛:本題考查了相似三角形的應用,熟練掌握相似三角形的判定與性質是解答本題的關鍵.9、D【解析】
根據軸對稱圖形的概念求解.【詳解】解:根據軸對稱圖形的概念,A、B、C都不是軸對稱圖形,D是軸對稱圖形.
故選D.【點睛】本題主要考查軸對稱圖形,軸對稱圖形的判斷方法:如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形10、D【解析】分析:根據軸對稱圖形與中心對稱圖形的概念結合矩形、平行四邊形、直角梯形、正五邊形的性質求解.詳解:A.直角梯形不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;B.平行四邊形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;C.矩形是軸對稱圖形,也是中心對稱圖形,故此選項錯誤;D.正五邊形是軸對稱圖形,不是中心對稱圖形,故此選項正確.故選D.點睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖形重合.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】試題解析:連接∵四邊形ABCD是矩形,∴CE=BC=4,∴CE=2CD,由勾股定理得:∴陰影部分的面積是S=S扇形CEB′?S△CDE故答案為12、6【解析】
點P在以O為圓心OA為半徑的圓上,P是兩個圓的交點,當⊙O與⊙M外切時,AB最小,根據條件求出AO即可求解;【詳解】解:點P在以O為圓心OA為半徑的圓上,∴P是兩個圓的交點,當⊙O與⊙M外切時,AB最小,∵⊙M的半徑為2,圓心M(3,4),∴PM=5,∴OA=3,∴AB=6,故答案為6;【點睛】本題考查圓與圓的位置關系;能夠將問題轉化為兩圓外切時AB最小是解題的關鍵.13、1【解析】
根據單項式系數及次數的定義進行解答即可.【詳解】根據單項式系數和次數的定義可知,﹣的系數是,次數是1.【點睛】本題考查了單項式,熟知單項式中的數字因數叫做單項式的系數,一個單項式中所有字母的指數的和叫做單項式的次數是解題的關鍵.14、.【解析】
如圖,過點P作PH⊥OB于點H,∵點P(m,m)是反比例函數y=在第一象限內的圖象上的一個點,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△PAB是等邊三角形,∴∠PAH=60°.∴根據銳角三角函數,得AH=.∴OB=3+∴S△POB=OB?PH=.15、【解析】分析:先提公因式,再利用平方差公式因式分解即可.詳解:a2(a-b)-4(a-b)=(a-b)(a2-4)=(a-b)(a-2)(a+2),故答案為:(a-b)(a-2)(a+2).點睛:本題考查的是因式分解,掌握提公因式法、平方差公式進行因式分解是解題的關鍵.16、x(x﹣2)(x﹣1)2【解析】
先整理出公因式(x2-2x),提取公因式后再對余下的多項式整理,利用提公因式法分解因式和完全平方公式法繼續進行因式分解.【詳解】解:(x2?2x)2?(2x?x2)=(x2?2x)2+(x2?2x)=(x2?2x)(x2?2x+1)=x(x?2)(x?1)2故答案為x(x﹣2)(x﹣1)2【點睛】此題考查了因式分解-提公因式法和公式法,熟練掌握這兩種方法是解題的關鍵.17、A3()【解析】
設直線y=與x軸的交點為G,過點A1,A2,A3分別作x軸的垂線,垂足分別為D、E、F,由條件可求得,再根據等腰三角形可分別求得A1D、A2E、A3F,可得到A1,A2,A3的坐標.【詳解】設直線y=與x軸的交點為G,
令y=0可解得x=-4,
∴G點坐標為(-4,0),
∴OG=4,
如圖1,過點A1,A2,A3分別作x軸的垂線,垂足分別為D、E、F,
∵△A1B1O為等腰直角三角形,
∴A1D=OD,
又∵點A1在直線y=x+上,
∴=,即=,解得A1D=1=()0,
∴A1(1,1),OB1=2,
同理可得=,即=,解得A2E==()1,則OE=OB1+B1E=,
∴A2(,),OB2=5,
同理可求得A3F==()2,則OF=5+=,
∴A3(,);故答案為(,)【點睛】本題主要考查等腰三角形的性質和直線上點的坐標特點,根據題意找到點的坐標的變化規律是解題的關鍵,注意觀察數據的變化.三、解答題(共7小題,滿分69分)18、(1)4元或6元;(2)九折.【解析】
解:(1)設每千克核桃應降價x元.根據題意,得(60﹣x﹣40)(100+×20)=2240,化簡,得x2﹣10x+24=0,解得x1=4,x2=6.答:每千克核桃應降價4元或6元.(2)由(1)可知每千克核桃可降價4元或6元.∵要盡可能讓利于顧客,∴每千克核桃應降價6元.此時,售價為:60﹣6=54(元),.答:該店應按原售價的九折出售.19、(1)y=﹣x2+4;(2)①E(5,9);②1.【解析】
(1)待定系數法即可解題,(2)①求出直線DA的解析式,根據頂點E在直線DA上,設出E的坐標,帶入即可求解;②AB掃過的面積是平行四邊形ABGE,根據S四邊形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK,求出點B(2,0),G(7,5),A(0,4),E(5,9),根據坐標幾何含義即可解題.【詳解】解:(1)∵A(0,4),B(2,0),C(﹣2,0)∴二次函數的圖象的頂點為A(0,4),∴設二次函數表達式為y=ax2+4,將B(2,0)代入,得4a+4=0,解得,a=﹣1,∴二次函數表達式y=﹣x2+4;(2)①設直線DA:y=kx+b(k≠0),將A(0,4),D(﹣4,0)代入,得,解得,,∴直線DA:y=x+4,由題意可知,平移后的拋物線的頂點E在直線DA上,∴設頂點E(m,m+4),∴平移后的拋物線表達式為y=﹣(x﹣m)2+m+4,又∵平移后的拋物線過點B(2,0),∴將其代入得,﹣(2﹣m)2+m+4=0,解得,m1=5,m2=0(不合題意,舍去),∴頂點E(5,9),②如圖,連接AB,過點B作BL∥AD交平移后的拋物線于點G,連結EG,∴四邊形ABGE的面積就是圖象A,B兩點間的部分掃過的面積,過點G作GK⊥x軸于點K,過點E作EI⊥y軸于點I,直線EI,GK交于點H.由點A(0,4)平移至點E(5,9),可知點B先向右平移5個單位,再向上平移5個單位至點G.∵B(2,0),∴點G(7,5),∴GK=5,OB=2,OK=7,∴BK=OK﹣OB=7﹣2=5,∵A(0,4),E(5,9),∴AI=9﹣4=5,EI=5,∴EH=7﹣5=2,HG=9﹣5=4,∴S四邊形ABGE=S矩形IOKH﹣S△AOB﹣S△AEI﹣S△EHG﹣S△GBK=7×9﹣×2×4﹣×5×5﹣×2×4﹣×5×5=63﹣8﹣25=1答:圖象A,B兩點間的部分掃過的面積為1.【點睛】本題考查了二次函數解析式的求法,二次函數的圖形和性質,二次函數的實際應用,難度較大,建立面積之間的等量關系是解題關鍵.20、(1)每臺空調的進價為1200元,每臺電冰箱的進價為1500元;(2)共有5種方案;(3)當100<k<150時,購進電冰箱38臺,空調62臺,總利潤最大;當0<k<100時,購進電冰箱34臺,空調66臺,總利潤最大,當k=100時,無論采取哪種方案,y1恒為20000元.【解析】
(1)用“用9000元購進電冰箱的數量與用7200元購進空調數量相等”建立方程即可;(2)建立不等式組求出x的范圍,代入即可得出結論;(3)建立y1=(k﹣100)x+20000,分三種情況討論即可.【詳解】(1)設每臺空調的進價為m元,則每臺電冰箱的進價(m+300)元,由題意得,,∴m=1200,經檢驗,m=1200是原分式方程的解,也符合題意,∴m+300=1500元,答:每臺空調的進價為1200元,每臺電冰箱的進價為1500元;(2)由題意,y=(1600﹣1500)x+(1400﹣1200)(100﹣x)=﹣100x+20000,∵,∴33≤x≤38,∵x為正整數,∴x=34,35,36,37,38,即:共有5種方案;(3)設廠家對電冰箱出廠價下調k(0<k<150)元后,這100臺家電的銷售總利潤為y1元,∴y1=(1600﹣1500+k)x+(1400﹣1200)(100﹣x)=(k﹣100)x+20000,當100<k<150時,y1隨x的最大而增大,∴x=38時,y1取得最大值,即:購進電冰箱38臺,空調62臺,總利潤最大,當0<k<100時,y1隨x的最大而減小,∴x=34時,y1取得最大值,即:購進電冰箱34臺,空調66臺,總利潤最大,當k=100時,無論采取哪種方案,y1恒為20000元.【點睛】本題考查了一次函數的應用,分式方程的應用,不等式組的應用,根據題意找出等量關系是解題的關鍵.21、(1)m=-6,點D的坐標為(-2,3);(2);(3)當或時,一次函數的值大于反比例函數的值.【解析】
(1)將點C的坐標(6,-1)代入即可求出m,再把D(n,3)代入反比例函數解析式求出n即可.(2)根據C(6,-1)、D(-2,3)得出直線CD的解析式,再求出直線CD與x軸和y軸的交點即可,得出OA、OB的長,再根據銳角三角函數的定義即可求得;(3)根據函數的圖象和交點坐標即可求得.【詳解】⑴把C(6,-1)代入,得.則反比例函數的解析式為,把代入,得,∴點D的坐標為(-2,3).⑵將C(6,-1)、D(-2,3)代入,得,解得.∴一次函數的解析式為,∴點B的坐標為(0,2),點A的坐標為(4,0).∴,在在中,∴.⑶根據函數圖象可知,當或時,一次函數的值大于反比例函數的值【點睛】此題考查了反比例函數與一次函數的交點問題.其知識點有解直角三角形,待定系數法求解析式,此題難度適中,注意掌握數形結合思想與方程思想的應用.22、詳見解析.【解析】試題分析:(1)根據定義分別求解即可求得答案;(1)①首先由函數y=1x1﹣bx=x,求得x(1x﹣b﹣1)=2,然后由其不變長度為零,求得答案;②由①,利用1≤b≤3,可求得其不變長度q的取值范圍;(3)由記函數y=x1﹣1x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數圖象記為G1,可得函數G的圖象關于x=m對稱,然后根據定義分別求得函數的不變值,再分類討論即可求得答案.試題解析:解:(1)∵函數y=x﹣1,令y=x,則x﹣1=x,無解;∴函數y=x﹣1沒有不變值;∵y=x-1=,令y=x,則,解得:x=±1,∴函數的不變值為±1,q=1﹣(﹣1)=1.∵函數y=x1,令y=x,則x=x1,解得:x1=2,x1=1,∴函數y=x1的不變值為:2或1,q=1﹣2=1;(1)①函數y=1x1﹣bx,令y=x,則x=1x1﹣bx,整理得:x(1x﹣b﹣1)=2.∵q=2,∴x=2且1x﹣b﹣1=2,解得:b=﹣1;②由①知:x(1x﹣b﹣1)=2,∴x=2或1x﹣b﹣1=2,解得:x1=2,x1=.∵1≤b≤3,∴1≤x1≤1,∴1﹣2≤q≤1﹣2,∴1≤q≤1;(3)∵記函數y=x1﹣1x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數圖象記為G1,∴函數G的圖象關于x=m對稱,∴G:y=.∵當x1﹣1x=x時,x3=2,x4=3;當(1m﹣x)1﹣1(1m﹣x)=x時,△=1+8m,當△<2,即m<﹣時,q=x4﹣x3=3;當△≥2,即m≥﹣時,x5=,x6=.①當﹣≤m≤2時,x3=2,x4=3,∴x6<2,∴x4﹣x6>3(不符合題意,舍去);②∵當x5=x4時,m=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 手術室護理指南:手術隔離技術
- 勝任才是硬道理培訓教材
- 中班健康:身體上的寶貝
- 糖尿病合并高血壓個案護理
- 轉移性骨腫瘤的護理及管理
- 2025年品質培訓資料
- 住宅小區停車庫租賃合同
- 辦公家具定制化設計與售后服務承諾書
- 城市綠化帶場地無償使用與生態維護協議
- 電力設備與廠房使用權轉讓合同
- 小學語文擴句、縮句專題
- 農村公路安全生命防護工程施工方案
- (部編版)統編版小學語文教材目錄(一至六年級上冊下冊齊全)
- 抗滑樁專項的施工組織方案[專家評審]
- 常用彈簧鋼號對照表
- 應用回歸分析(第三版)何曉群_劉文卿_課后習題答案_完整版
- 小學二年級下冊勞動教案
- 食品安全及衛生保證措施
- 60m3臥式液化石油氣儲罐設計
- 樹脂的污染及處理
- 食品企業蟲害控制培訓課件.pptx
評論
0/150
提交評論