2022屆黑龍江省哈爾濱市光華中學中考數學五模試卷含解析_第1頁
2022屆黑龍江省哈爾濱市光華中學中考數學五模試卷含解析_第2頁
2022屆黑龍江省哈爾濱市光華中學中考數學五模試卷含解析_第3頁
2022屆黑龍江省哈爾濱市光華中學中考數學五模試卷含解析_第4頁
2022屆黑龍江省哈爾濱市光華中學中考數學五模試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022屆黑龍江省哈爾濱市光華中學中考數學五模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在Rt△ABC中,∠ACB=90°,AC=2,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉180°后點B與點A恰好重合,則圖中陰影部分的面積為()A. B. C. D.2.如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E,F分別是AC,BC的中點,直線EF與⊙O交于G,H兩點,若⊙O的半徑為6,則GE+FH的最大值為()A.6 B.9 C.10 D.123.如圖,在△ABC中,∠C=90°,AD是∠BAC的角平分線,若CD=2,AB=8,則△ABD的面積是()A.6 B.8 C.10 D.124.據報道,目前我國“天河二號”超級計算機的運算速度位居全球第一,其運算速度達到了每秒338600000億次,數字338600000用科學記數法可簡潔表示為()A.3.386×108 B.0.3386×109 C.33.86×107 D.3.386×1095.如圖,矩形ABCD的頂點A、C分別在直線a、b上,且a∥b,∠1=60°,則∠2的度數為()A.30° B.45° C.60° D.75°6.如圖,四邊形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中點,則CM的長為()A. B.2 C. D.37.如圖是一個由4個相同的長方體組成的立體圖形,它的主視圖是()A.B.C.D.8.已知一個正多邊形的一個外角為36°,則這個正多邊形的邊數是()A.8B.9C.10D.119.一、單選題如圖,幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是()A. B. C. D.10.如圖,能判定EB∥AC的條件是()A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,DE∥BC,若AD=1,DB=2,則的值為_________.12.為了求1+2+22+23+…+22016+22017的值,可令S=1+2+22+23+…+22016+22017,則2S=2+22+23+24+…+22017+22018,因此2S﹣S=22018﹣1,所以1+22+23+…+22017=22018﹣1.請你仿照以上方法計算1+5+52+53+…+52017的值是_____.13.一個圓錐的母線長15CM.高為9CM.則側面展開圖的圓心角________。14.如圖,在△ABC中,AB=AC=15,點D是BC邊上的一動點(不與B,C重合),∠ADE=∠B=∠α,DE交AB于點E,且tan∠α=34,有以下的結論:①△ADE∽△ACD;②當CD=9時,△ACD與△DBE全等;③△BDE為直角三角形時,BD為12或214;④0<BE≤15.請你算一算:如果每人每天節約1粒大米,全國13億人口一天就能節約_____千克大米!(結果用科學記數法表示,已知1克大米約52粒)16.如圖,已知O為△ABC內一點,點D、E分別在邊AB和AC上,且,DE∥BC,設、,那么______(用、表示).17.如果2,那么=_____(用向量,表示向量).三、解答題(共7小題,滿分69分)18.(10分)先化簡,再求值:,其中x是從-1、0、1、2中選取一個合適的數.19.(5分)拋物線y=ax2+bx+3(a≠0)經過點A(﹣1,0),B(,0),且與y軸相交于點C.(1)求這條拋物線的表達式;(2)求∠ACB的度數;(3)設點D是所求拋物線第一象限上一點,且在對稱軸的右側,點E在線段AC上,且DE⊥AC,當△DCE與△AOC相似時,求點D的坐標.20.(8分)小晗家客廳裝有一種三位單極開關,分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,在正常情況下,小晗按下任意一個開關均可打開對應的一盞電燈,既可三盞、兩盞齊開,也可分別單盞開.因剛搬進新房不久,不熟悉情況.若小晗任意按下一個開關,正好樓梯燈亮的概率是多少?若任意按下一個開關后,再按下另兩個開關中的一個,則正好客廳燈和走廊燈同時亮的概率是多少?請用樹狀圖或列表法加以說明.21.(10分)如圖所示,一艘輪船位于燈塔P的北偏東方向與燈塔Р的距離為80海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東方向上的B處.求此時輪船所在的B處與燈塔Р的距離.(結果保留根號)22.(10分)計算:-2-2-+023.(12分)解分式方程:=124.(14分)“六一”兒童節前夕,某縣教育局準備給留守兒童贈送一批學習用品,先對紅星小學的留守兒童人數進行抽樣統計,發現各班留守兒童人數分別為6名,7名,8名,10名,12名這五種情形,并繪制出如下的統計圖①和圖②.請根據相關信息,解答下列問題:(1)該校有_____個班級,補全條形統計圖;(2)求該校各班留守兒童人數數據的平均數,眾數與中位數;(3)若該鎮所有小學共有60個教學班,請根據樣本數據,估計該鎮小學生中,共有多少名留守兒童.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

陰影部分的面積=三角形的面積-扇形的面積,根據面積公式計算即可.【詳解】解:由旋轉可知AD=BD,∵∠ACB=90°,AC=2,∴CD=BD,∵CB=CD,∴△BCD是等邊三角形,∴∠BCD=∠CBD=60°,∴BC=AC=2,∴陰影部分的面積=2×2÷2?=2?.故選:B.【點睛】本題考查了旋轉的性質與扇形面積的計算,解題的關鍵是熟練的掌握旋轉的性質與扇形面積的計算.2、B【解析】

首先連接OA、OB,根據圓周角定理,求出∠AOB=2∠ACB=60°,進而判斷出△AOB為等邊三角形;然后根據⊙O的半徑為6,可得AB=OA=OB=6,再根據三角形的中位線定理,求出EF的長度;最后判斷出當弦GH是圓的直徑時,它的值最大,進而求出GE+FH的最大值是多少即可.【詳解】解:如圖,連接OA、OB,,∵∠ACB=30°,∴∠AOB=2∠ACB=60°,∵OA=OB,∴△AOB為等邊三角形,∵⊙O的半徑為6,∴AB=OA=OB=6,∵點E,F分別是AC、BC的中點,∴EF=AB=3,要求GE+FH的最大值,即求GE+FH+EF(弦GH)的最大值,∵當弦GH是圓的直徑時,它的最大值為:6×2=12,∴GE+FH的最大值為:12﹣3=1.故選:B.【點睛】本題結合動點考查了圓周角定理,三角形中位線定理,有一定難度.確定GH的位置是解題的關鍵.3、B【解析】分析:過點D作DE⊥AB于E,先求出CD的長,再根據角平分線上的點到角的兩邊的距離相等可得DE=CD=2,然后根據三角形的面積公式列式計算即可得解.詳解:如圖,過點D作DE⊥AB于E,∵AB=8,CD=2,∵AD是∠BAC的角平分線,∴DE=CD=2,∴△ABD的面積故選B.點睛:考查角平分線的性質,角平分線上的點到角兩邊的距離相等.4、A【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:數字338600000用科學記數法可簡潔表示為3.386×108故選:A【點睛】本題考查科學記數法—表示較大的數.5、C【解析】試題分析:過點D作DE∥a,∵四邊形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故選C.考點:1矩形;2平行線的性質.6、C【解析】

延長BC到E使BE=AD,利用中點的性質得到CM=DE=AB,再利用勾股定理進行計算即可解答.【詳解】解:延長BC到E使BE=AD,∵BC//AD,∴四邊形ACED是平行四邊形,∴DE=AB,∵BC=3,AD=1,∴C是BE的中點,∵M是BD的中點,∴CM=DE=AB,∵AC⊥BC,∴AB==,∴CM=,故選:C.【點睛】此題考查平行四邊形的性質,勾股定理,解題關鍵在于作輔助線.7、A【解析】由三視圖的定義可知,A是該幾何體的三視圖,B、C、D不是該幾何體的三視圖.故選A.點睛:從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,看不到的線畫虛線.本題從左面看有兩列,左側一列有兩層,右側一列有一層.8、C【解析】試題分析:已知一個正多邊形的一個外角為36°,則這個正多邊形的邊數是360÷36=10,故選C.考點:多邊形的內角和外角.9、D【解析】試題分析:觀察幾何體,可知該幾何體是由3個大小完全一樣的正方體組成的,它的左視圖是,故答案選D.考點:簡單幾何體的三視圖.10、C【解析】

在復雜的圖形中具有相等關系的兩角首先要判斷它們是否是同位角或內錯角,被判斷平行的兩直線是否由“三線八角”而產生的被截直線.【詳解】A、∠C=∠ABE不能判斷出EB∥AC,故本選項錯誤;B、∠A=∠EBD不能判斷出EB∥AC,故本選項錯誤;C、∠A=∠ABE,根據內錯角相等,兩直線平行,可以得出EB∥AC,故本選項正確;D、∠C=∠ABC只能判斷出AB=AC,不能判斷出EB∥AC,故本選項錯誤.故選C.【點睛】本題考查了平行線的判定,正確識別“三線八角”中的同位角、內錯角、同旁內角是正確答題的關鍵,只有同位角相等、內錯角相等、同旁內角互補,才能推出兩被截直線平行.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】DE∥BC即12、【解析】

根據上面的方法,可以令S=1+5+52+53+…+52017,則5S=5+52+53+…+52012+52018,再相減算出S的值即可.【詳解】解:令S=1+5+52+53+…+52017,則5S=5+52+53+…+52012+52018,5S﹣S=﹣1+52018,4S=52018﹣1,則S=,故答案為:.【點睛】此題參照例子,采用類比的方法就可以解決,注意這里由于都是5的次方,所以要用5S來達到抵消的目的.13、288°【解析】

母線長為15cm,高為9cm,由勾股定理可得圓錐的底面半徑;由底面周長與扇形的弧長相等求得圓心角.【詳解】解:如圖所示,在Rt△SOA中,SO=9,SA=15;則:設側面屬開圖扇形的國心角度數為n,則由得n=288°故答案為:288°.【點睛】本題利用了勾股定理,弧長公式,圓的周長公式和扇形面積公式求解.14、②③.【解析】試題解析:①∵∠ADE=∠B,∠DAE=∠BAD,∴△ADE∽△ABD;故①錯誤;②作AG⊥BC于G,∵∠ADE=∠B=α,tan∠α=34∴AGBG∴BGAB∴cosα=45∵AB=AC=15,∴BG=1,∴BC=24,∵CD=9,∴BD=15,∴AC=BD.∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,∴∠EDB=∠DAC,在△ACD與△DBE中,∠DAC=∠EDB∠B=∠C∴△ACD≌△BDE(ASA).故②正確;③當∠BED=90°時,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠BED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且tan∠α=34∴BD∴BD=1.當∠BDE=90°時,易證△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠C=α且cosα=45∴cosC=ACCD∴CD=754∵BC=24,∴BD=24-754=即當△DCE為直角三角形時,BD=1或214故③正確;④易證得△BDE∽△CAD,由②可知BC=24,設CD=y,BE=x,∴ACBD∴1524-y整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,∴0<x≤485∴0<BE≤485故④錯誤.故正確的結論為:②③.考點:1.相似三角形的判定與性質;2.全等三角形的判定與性質.15、2.5×1【解析】

先根據有理數的除法求出節約大米的千克數,再用科學計數法表示,對于一個絕對值較大的數,用科學記數法寫成的形式,其中,n是比原整數位數少1的數.【詳解】1300000000÷52÷1000(千克)=25000(千克)=2.5×1(千克).故答案為2.5×1.【點睛】本題考查了有理數的除法和正整數指數科學計數法,根據科學計算法的要求,正確確定出a和n的值是解答本題的關鍵.16、【解析】

根據,DE∥BC,結合平行線分線段成比例來求.【詳解】∵,DE∥BC,∴,∴==.∵,∴∴.故答案為:.【點睛】本題考查的知識點是平面向量,解題的關鍵是熟練的掌握平面向量.17、【解析】∵2(+)=+,∴2+2=+,∴=-2,故答案為.點睛:本題看成平面向量、一元一次方程等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考基礎題.三、解答題(共7小題,滿分69分)18、.【解析】

先把分子分母因式分解,約分后進行通分化為同分母,再進行同分母的加法運算,然后再約分得到原式=,由于x不能取±1,2,所以把x=0代入計算即可.【詳解】,====,當x=0時,原式=.19、(1)y=﹣2x2+x+3;(2)∠ACB=41°;(3)D(,).【解析】試題分析:把點的坐標代入即可求得拋物線的解析式.作BH⊥AC于點H,求出的長度,即可求出∠ACB的度數.延長CD交x軸于點G,△DCE∽△AOC,只可能∠CAO=∠DCE.求出直線的方程,和拋物線的方程聯立即可求得點的坐標.試題解析:(1)由題意,得解得.∴這條拋物線的表達式為.(2)作BH⊥AC于點H,∵A點坐標是(-1,0),C點坐標是(0,3),B點坐標是(,0),∴AC=,AB=,OC=3,BC=.∵,即∠BAD=,∴.Rt△BCH中,,BC=,∠BHC=90o,∴.又∵∠ACB是銳角,∴.(3)延長CD交x軸于點G,∵Rt△AOC中,AO=1,AC=,∴.∵△DCE∽△AOC,∴只可能∠CAO=∠DCE.∴AG=CG.∴.∴AG=1.∴G點坐標是(4,0).∵點C坐標是(0,3),∴.∴解得,(舍).∴點D坐標是20、(1);(2).【解析】試題分析:(1)、3個等只有一個控制樓梯,則概率就是1÷3;(2)、根據題意畫出樹狀圖,然后根據概率的計算法則得出概率.試題解析:(1)、小晗任意按下一個開關,正好樓梯燈亮的概率是:(2)、畫樹狀圖得:結果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)∵共有6種等可能的結果,正好客廳燈和走廊燈同時亮的有2種情況,∴正好客廳燈和走廊燈同時亮的概率是=.考點:概率的計算.21、海里【解析】

過點P作,則在Rt△APC中易得PC的長,再在直角△BPC中求出PB.【詳解】解:如圖,過點P作,垂足為點C.∴,,海里.在中,,∴(海里).在中,,∴(海里).∴此時輪船所在的B處與燈塔P的距離是海里.【點睛】解一般三角形,求三角形的邊或高的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.22、【解析】

直接利用負指數冪的性質以及零指數冪的性質和特殊角的銳角三角函數值分別化簡,再根據實數的運算法則即可求出答案.【詳解】解:原式=【點睛】本題考查了負指數冪的性質以及零指數冪的性質和特殊角的銳角三角函數值,熟記這些運算法則是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論