




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年湖北省黃石市富川中學中考數學模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列運算正確的是()A. B.C.a2?a3=a5 D.(2a)3=2a32.如圖,在正方形ABCD中,AB=9,點E在CD邊上,且DE=2CE,點P是對角線AC上的一個動點,則PE+PD的最小值是()A. B. C.9 D.3.如圖所示,在平面直角坐標系中,點A、B、C的坐標分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點B的對應點B1的坐標是(1,2),則點A1,C1的坐標分別是()A.A1(4,4),C1(3,2) B.A1(3,3),C1(2,1)C.A1(4,3),C1(2,3) D.A1(3,4),C1(2,2)4.《九章算術》是我國古代數學的經典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設每枚黃金重x兩,每枚白銀重y兩,根據題意得()A.B.C.D.5.下列運算正確的是()A. B.C. D.6.下列各數中,最小的數是A. B. C.0 D.7.若關于x的一元二次方程x2﹣2x+m=0沒有實數根,則實數m的取值是()A.m<1 B.m>﹣1 C.m>1 D.m<﹣18.下列圖形中既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.9.實數a,b在數軸上對應的點的位置如圖所示,則正確的結論是()A.a+b<0 B.a>|﹣2| C.b>π D.10.已知a,b,c在數軸上的位置如圖所示,化簡|a+c|-|a-2b|-|c+2b|的結果是()A.4b+2c B.0 C.2c D.2a+2c二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在中國象棋的殘局上建立平面直角坐標系,如果“相”和“兵”的坐標分別是(3,-1)和(-3,1),那么“卒”的坐標為_____.
12.如圖,在△ABC中,AB=3+,∠B=45°,∠C=105°,點D、E、F分別在AC、BC、AB上,且四邊形ADEF為菱形,若點P是AE上一個動點,則PF+PB的最小值為_____.13.如圖,以點為圓心的兩個同心圓中,大圓的弦是小圓的切線,點是切點,則劣弧AB的長為.(結果保留)14.如圖,△ABC∽△ADE,∠BAC=∠DAE=90°,AB=6,AC=8,F為DE中點,若點D在直線BC上運動,連接CF,則在點D運動過程中,線段CF的最小值是_____.15.如圖所示的網格是正方形網格,點P到射線OA的距離為m,點P到射線OB的距離為n,則m__________n.(填“>”,“=”或“<”)16.拋物線y=(x+1)2-2的頂點坐標是______.17.觀察如圖中的數列排放順序,根據其規律猜想:第10行第8個數應該是_____.三、解答題(共7小題,滿分69分)18.(10分)如圖,直線y=﹣x+4與x軸交于點A,與y軸交于點B.拋物線y=﹣x2+bx+c經過A,B兩點,與x軸的另外一個交點為C填空:b=,c=,點C的坐標為.如圖1,若點P是第一象限拋物線上的點,連接OP交直線AB于點Q,設點P的橫坐標為m.PQ與OQ的比值為y,求y與m的數學關系式,并求出PQ與OQ的比值的最大值.如圖2,若點P是第四象限的拋物線上的一點.連接PB與AP,當∠PBA+∠CBO=45°時.求△PBA的面積.19.(5分)樓房AB后有一假山,其坡度為i=1:,山坡坡面上E點處有一休息亭,測得假山坡腳C與樓房水平距離BC=30米,與亭子距離CE=18米,小麗從樓房頂測得E點的俯角為45°,求樓房AB的高.(注:坡度i是指坡面的鉛直高度與水平寬度的比)20.(8分)如圖,己知AB是⊙C的直徑,C為圓上一點,D是BC的中點,CH⊥AB于H,垂足為H,連OD交弦BC于E,交CH于F,聯結EH.(1)求證:△BHE∽△BCO.(2)若OC=4,BH=1,求21.(10分)已知OA,OB是⊙O的半徑,且OA⊥OB,垂足為O,P是射線OA上的一點(點A除外),直線BP交⊙O于點Q,過Q作⊙O的切線交射線OA于點E.(1)如圖①,點P在線段OA上,若∠OBQ=15°,求∠AQE的大小;(2)如圖②,點P在OA的延長線上,若∠OBQ=65°,求∠AQE的大小.22.(10分)化簡:(x+7)(x-6)-(x-2)(x+1)23.(12分)計算:(1)﹣12018+|﹣2|+2cos30°;(2)(a+1)2+(1﹣a)(a+1);24.(14分)如圖,在邊長為1個單位長度的小正方形網格中:(1)畫出△ABC向上平移6個單位長度,再向右平移5個單位長度后的△A1B1C1.(2)以點B為位似中心,將△ABC放大為原來的2倍,得到△A2B2C2,請在網格中畫出△A2B2C2.(3)求△CC1C2的面積.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
根據算術平方根的定義、二次根式的加減運算、同底數冪的乘法及積的乘方的運算法則逐一計算即可判斷.【詳解】解:A、=2,此選項錯誤;B、不能進一步計算,此選項錯誤;C、a2?a3=a5,此選項正確;D、(2a)3=8a3,此選項計算錯誤;故選:C.【點睛】本題主要考查二次根式的加減和冪的運算,解題的關鍵是掌握算術平方根的定義、二次根式的加減運算、同底數冪的乘法及積的乘方的運算法則.2、A【解析】解:如圖,連接BE,設BE與AC交于點P′,∵四邊形ABCD是正方形,∴點B與D關于AC對稱,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC與BE的交點上時,PD+PE最小,為BE的長度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==.故選A.點睛:此題考查了軸對稱﹣﹣最短路線問題,正方形的性質,要靈活運用對稱性解決此類問題.找出P點位置是解題的關鍵.3、A【解析】分析:根據B點的變化,確定平移的規律,將△ABC向右移5個單位、上移1個單位,然后確定A、C平移后的坐標即可.詳解:由點B(﹣4,1)的對應點B1的坐標是(1,2)知,需將△ABC向右移5個單位、上移1個單位,則點A(﹣1,3)的對應點A1的坐標為(4,4)、點C(﹣2,1)的對應點C1的坐標為(3,2),故選A.點睛:此題主要考查了平面直角坐標系中的平移,關鍵是根據已知點的平移變化總結出平移的規律.4、D【解析】
根據題意可得等量關系:①9枚黃金的重量=11枚白銀的重量;②(10枚白銀的重量+1枚黃金的重量)-(1枚白銀的重量+8枚黃金的重量)=13兩,根據等量關系列出方程組即可.【詳解】設每枚黃金重x兩,每枚白銀重y兩,由題意得:,故選:D.【點睛】此題主要考查了由實際問題抽象出二元一次方程組,關鍵是正確理解題意,找出題目中的等量關系.5、D【解析】【分析】根據同底數冪的乘法、積的乘方、完全平方公式、多項式乘法的法則逐項進行計算即可得.【詳解】A.,故A選項錯誤,不符合題意;B.,故B選項錯誤,不符合題意;C.,故C選項錯誤,不符合題意;D.,正確,符合題意,故選D.【點睛】本題考查了整式的運算,熟練掌握同底數冪的乘法、積的乘方、完全平方公式、多項式乘法的運算法則是解題的關鍵.6、A【解析】
應明確在數軸上,從左到右的順序,就是數從小到大的順序,據此解答.【詳解】解:因為在數軸上-3在其他數的左邊,所以-3最小;故選A.【點睛】此題考負數的大小比較,應理解數字大的負數反而小.7、C【解析】試題解析:關于的一元二次方程沒有實數根,,解得:故選C.8、C【解析】
根據軸對稱圖形和中心對稱圖形的概念,對各個選項進行判斷,即可得到答案.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故A錯誤;B、是軸對稱圖形,不是中心對稱圖形,故B錯誤;C、既是軸對稱圖形,也是中心對稱圖形,故C正確;D、既不是軸對稱圖形,也不是中心對稱圖形,故D錯誤;故選:C.【點睛】本題考查了軸對稱圖形和中心對稱圖形的概念,解題的關鍵是熟練掌握概念進行分析判斷.9、D【解析】
根據數軸上點的位置,可得a,b,根據有理數的運算,可得答案.【詳解】a=﹣2,2<b<1.A.a+b<0,故A不符合題意;B.a<|﹣2|,故B不符合題意;C.b<1<π,故C不符合題意;D.<0,故D符合題意;故選D.【點睛】本題考查了實數與數軸,利用有理數的運算是解題關鍵.10、A【解析】由數軸上點的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a?2b>0,c+2b<0,則原式=a+c?a+2b+c+2b=4b+2c.故選:B.點睛:本題考查了整式的加減以及數軸,涉及的知識有:去括號法則以及合并同類項法則,熟練掌握運算法則是解本題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、(-2,-2)【解析】
先根據“相”和“兵”的坐標確定原點位置,然后建立坐標系,進而可得“卒”的坐標.【詳解】“卒”的坐標為(﹣2,﹣2),故答案是:(﹣2,﹣2).【點睛】考查了坐標確定位置,關鍵是正確確定原點位置.12、【解析】
如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.由四邊形ADEF是菱形,推出F,D關于直線AE對稱,推出PF=PD,推出PF+PB=PA+PB,由PD+PB≥BD,推出PF+PB的最小值是線段BD的長.【詳解】如圖,連接OD,BD,作DH⊥AB于H,EG⊥AB于G.∵四邊形ADEF是菱形,∴F,D關于直線AE對稱,∴PF=PD,∴PF+PB=PA+PB,∵PD+PB≥BD,∴PF+PB的最小值是線段BD的長,∵∠CAB=180°-105°-45°=30°,設AF=EF=AD=x,則DH=EG=x,FG=x,∵∠EGB=45°,EG⊥BG,∴EG=BG=x,∴x+x+x=3+,∴x=2,∴DH=1,BH=3,∴BD==,∴PF+PB的最小值為,故答案為.【點睛】本題考查軸對稱-最短問題,菱形的性質等知識,解題的關鍵是學會用轉化的思想思考問題,學會利用軸對稱解決最短問題.13、8π.【解析】試題分析:因為AB為切線,P為切點,劣弧AB所對圓心角考點:勾股定理;垂徑定理;弧長公式.14、1【解析】試題分析:當點A、點C和點F三點共線的時候,線段CF的長度最小,點F在AC的中點,則CF=1.15、>【解析】
由圖像可知在射線OP上有一個特殊點Q,點Q到射線OA的距離QD=2,點Q到射線OB的距離QC=1,于是可知∠AOP>∠BOP,利用銳角三角函數sin∠AOP>【詳解】由題意可知:找到特殊點Q,如圖所示:設點Q到射線OA的距離QD,點Q到射線OB的距離QC由圖可知QD=2,∴sin∠AOP=QDOP∴sin∴m∴m>n【點睛】本題考查了點到線的距離,熟知在直角三角形中利用三角函數來解角和邊的關系是解題關鍵.16、(-1,-2)【解析】試題分析:因為y=(x+1)2﹣2是拋物線的頂點式,根據頂點式的坐標特點可知,頂點坐標為(﹣1,﹣2),故答案為(﹣1,﹣2).考點:二次函數的性質.17、1【解析】
由n行有n個數,可得出第10行第8個數為第1個數,結合奇數為正偶數為負,即可求出結論.【詳解】解:第1行1個數,第2行2個數,第3行3個數,…,∴第9行9個數,∴第10行第8個數為第1+2+3+…+9+8=1個數.又∵第2n﹣1個數為2n﹣1,第2n個數為﹣2n,∴第10行第8個數應該是1.故答案為:1.【點睛】本題考查了規律型中數字的變化類,根據數的變化找出變化規律是解題的關鍵.三、解答題(共7小題,滿分69分)18、(3)3,2,C(﹣2,4);(2)y=﹣m2+m,PQ與OQ的比值的最大值為;(3)S△PBA=3.【解析】
(3)通過一次函數解析式確定A、B兩點坐標,直接利用待定系數法求解即可得到b,c的值,令y=4便可得C點坐標.
(2)分別過P、Q兩點向x軸作垂線,通過PQ與OQ的比值為y以及平行線分線段成比例,找到,設點P坐標為(m,-m2+m+2),Q點坐標(n,-n+2),表示出ED、OD等長度即可得y與m、n之間的關系,再次利用即可求解.
(3)求得P點坐標,利用圖形割補法求解即可.【詳解】(3)∵直線y=﹣x+2與x軸交于點A,與y軸交于點B.∴A(2,4),B(4,2).又∵拋物線過B(4,2)∴c=2.把A(2,4)代入y=﹣x2+bx+2得,4=﹣×22+2b+2,解得,b=3.∴拋物線解析式為,y=﹣x2+x+2.令﹣x2+x+2=4,解得,x=﹣2或x=2.∴C(﹣2,4).(2)如圖3,分別過P、Q作PE、QD垂直于x軸交x軸于點E、D.設P(m,﹣m2+m+2),Q(n,﹣n+2),則PE=﹣m2+m+2,QD=﹣n+2.又∵=y.∴n=.又∵,即把n=代入上式得,整理得,2y=﹣m2+2m.∴y=﹣m2+m.ymax=.即PQ與OQ的比值的最大值為.(3)如圖2,∵∠OBA=∠OBP+∠PBA=25°∠PBA+∠CBO=25°∴∠OBP=∠CBO此時PB過點(2,4).設直線PB解析式為,y=kx+2.把點(2,4)代入上式得,4=2k+2.解得,k=﹣2∴直線PB解析式為,y=﹣2x+2.令﹣2x+2=﹣x2+x+2整理得,x2﹣3x=4.解得,x=4(舍去)或x=5.當x=5時,﹣2x+2=﹣2×5+2=﹣7∴P(5,﹣7).過P作PH⊥cy軸于點H.則S四邊形OHPA=(OA+PH)?OH=(2+5)×7=24.S△OAB=OA?OB=×2×2=7.S△BHP=PH?BH=×5×3=35.∴S△PBA=S四邊形OHPA+S△OAB﹣S△BHP=24+7﹣35=3.【點睛】本題考查了函數圖象與坐標軸交點坐標的確定,以及利用待定系數法求解拋物線解析式常數的方法,再者考查了利用數形結合的思想將圖形線段長度的比化為坐標軸上點之間的線段長度比的思維能力.還考查了運用圖形割補法求解坐標系內圖形的面積的方法.19、(39+9)米.【解析】
過點E作EF⊥BC的延長線于F,EH⊥AB于點H,根據CE=20米,坡度為i=1:,分別求出EF、CF的長度,在Rt△AEH中求出AH,繼而可得樓房AB的高.【詳解】解:過點E作EF⊥BC的延長線于F,EH⊥AB于點H,在Rt△CEF中,∵=tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:樓房AB的高為(35+10)米.【點睛】本題考查解直角三角形的應用-仰角俯角問題;坡度坡角問題,掌握概念正確計算是本題的解題關鍵.20、(1)證明見解析;(2)EH=【解析】
(1)由題意推出∠EHB=∠OCB,(2)結合△BHE~△BCO,推出BHBC【詳解】(1)證明:∵OD為圓的半徑,D是的中點,∴OD⊥BC,BE=CE=1∵CH⊥AB,∴∠CHB=90∴HE=1∴∠B=∠EHB,∵OB=OC,∴∠B=∠OCB,∴∠EHB=∠OCB,又∵∠B=∠B,∴ΔBHE∽ΔBCO.(2)∵ΔBHE∽ΔBCO,∴BHBC∵OC=4,BH=1,∴OB=4得12解得BE=2∴EH=BE=2【點睛】本題考查的知識點是圓與相似三角形,解題的關鍵是熟練的掌握圓與相似三角形.21、(1)30°;(2)20°;【解析】
(1)利用圓切線的性質求解;(2)連接OQ,利
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆廣西南寧市天桃實驗學校八下英語期中監測模擬試題含答案
- 2025年醫院信息化建設電子病歷系統與患者教育系統的協同報告
- 2025年醫院電子病歷系統在醫院信息化建設中的邊緣計算技術應用報告
- 2025年醫院電子病歷系統優化在醫院信息化建設中的數據安全風險預警報告
- 咨詢工程師沖刺講義課件
- 能源與資源行業:電動汽車產業鏈上下游分析報告
- 冷鏈物流溫控技術在冷鏈物流運輸工具上的應用研究報告
- 2025年食品飲料行業品牌競爭力評估報告
- 2025年文化產業引導資金申請政策解讀與申報指南報告
- 新建年產4000噸雙色燒米餅項目可行性研究報告寫作模板-備案審批
- 反對自由主義-全文-原文
- 2024-2030年中國鉭行業市場前景分析及投資發展預測報告
- 元宇宙期刊產業政策-洞察分析
- 換電站合同范例
- 【超星學習通】馬克思主義基本原理(南開大學)爾雅章節測試網課答案
- 【MOOC】中國藝術歌曲演唱與賞析-江西財經大學 中國大學慕課MOOC答案
- 【MOOC】運輸包裝-暨南大學 中國大學慕課MOOC答案
- (CNAS-CL01-2018認可準則)內審核查表
- 小學語文1-6年級·課內16則文言文·譯文注釋
- 美容院服務項目及操作流程手冊
- 《食用亞麻籽(粉)等級規格》編制說明
評論
0/150
提交評論