




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北京市東城區2024屆高考數學二模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數的最小正周期為,且滿足,則要得到函數的圖像,可將函數的圖像()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度2.已知實數滿足則的最大值為()A.2 B. C.1 D.03.設分別為雙曲線的左、右焦點,過點作圓的切線,與雙曲線的左、右兩支分別交于點,若,則雙曲線漸近線的斜率為()A. B. C. D.4.若,則的虛部是A.3 B. C. D.5.函數()的圖象的大致形狀是()A. B. C. D.6.已知函數,滿足對任意的實數,都有成立,則實數的取值范圍為()A. B. C. D.7.已知集合,集合,那么等于()A. B. C. D.8.已知函數()的部分圖象如圖所示,且,則的最小值為()A. B.C. D.9.已知復數是純虛數,其中是實數,則等于()A. B. C. D.10.已知過點且與曲線相切的直線的條數有().A.0 B.1 C.2 D.311.函數的單調遞增區間是()A. B. C. D.12.函數在的圖象大致為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點處的切線方程為__.14.展開式中的系數為_________.(用數字做答)15.如圖,在復平面內,復數,對應的向量分別是,,則_______.16.的展開式中的系數為____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)金秋九月,丹桂飄香,某高校迎來了一大批優秀的學生.新生接待其實也是和社會溝通的一個平臺.校團委、學生會從在校學生中隨機抽取了160名學生,對是否愿意投入到新生接待工作進行了問卷調查,統計數據如下:愿意不愿意男生6020女士4040(1)根據上表說明,能否有99%把握認為愿意參加新生接待工作與性別有關;(2)現從參與問卷調查且愿意參加新生接待工作的學生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機選取3人到火車站迎接新生,設選取的3人中女生人數為,寫出的分布列,并求.附:,其中.0.050.010.0013.8416.63510.82818.(12分)已知函數(其中是自然對數的底數)(1)若在R上單調遞增,求正數a的取值范圍;(2)若f(x)在處導數相等,證明:;(3)當時,證明:對于任意,若,則直線與曲線有唯一公共點(注:當時,直線與曲線的交點在y軸兩側).19.(12分)已知橢圓,點,點滿足(其中為坐標原點),點在橢圓上.(1)求橢圓的標準方程;(2)設橢圓的右焦點為,若不經過點的直線與橢圓交于兩點.且與圓相切.的周長是否為定值?若是,求出定值;若不是,請說明理由.20.(12分)已知橢圓的右焦點為,過點且斜率為的直線與橢圓交于兩點,線段的中點為為坐標原點.(1)證明:點在軸的右側;(2)設線段的垂直平分線與軸、軸分別相交于點.若與的面積相等,求直線的斜率21.(12分)設函數.(1)求的值;(2)若,求函數的單調遞減區間.22.(10分)已知矩陣,.求矩陣;求矩陣的特征值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
依題意可得,且是的一條對稱軸,即可求出的值,再根據三角函數的平移規則計算可得;【詳解】解:由已知得,是的一條對稱軸,且使取得最值,則,,,,故選:C.【點睛】本題考查三角函數的性質以及三角函數的變換規則,屬于基礎題.2、B【解析】
作出可行域,平移目標直線即可求解.【詳解】解:作出可行域:由得,由圖形知,經過點時,其截距最大,此時最大得,當時,故選:B【點睛】考查線性規劃,是基礎題.3、C【解析】
如圖所示:切點為,連接,作軸于,計算,,,,根據勾股定理計算得到答案.【詳解】如圖所示:切點為,連接,作軸于,,故,在中,,故,故,,根據勾股定理:,解得.故選:.【點睛】本題考查了雙曲線的漸近線斜率,意在考查學生的計算能力和綜合應用能力.4、B【解析】
因為,所以的虛部是.故選B.5、C【解析】
對x分類討論,去掉絕對值,即可作出圖象.【詳解】故選C.【點睛】識圖常用的方法(1)定性分析法:通過對問題進行定性的分析,從而得出圖象的上升(或下降)的趨勢,利用這一特征分析解決問題;(2)定量計算法:通過定量的計算來分析解決問題;(3)函數模型法:由所提供的圖象特征,聯想相關函數模型,利用這一函數模型來分析解決問題.6、B【解析】
由題意可知函數為上為減函數,可知函數為減函數,且,由此可解得實數的取值范圍.【詳解】由題意知函數是上的減函數,于是有,解得,因此,實數的取值范圍是.故選:B.【點睛】本題考查利用分段函數的單調性求參數,一般要分析每支函數的單調性,同時還要考慮分段點處函數值的大小關系,考查運算求解能力,屬于中等題.7、A【解析】
求出集合,然后進行并集的運算即可.【詳解】∵,,∴.故選:A.【點睛】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運算,屬于基礎題.8、A【解析】
是函數的零點,根據五點法求出圖中零點及軸左邊第一個零點可得.【詳解】由題意,,∴函數在軸右邊的第一個零點為,在軸左邊第一個零點是,∴的最小值是.故選:A.【點睛】本題考查三角函數的周期性,考查函數的對稱性.函數的零點就是其圖象對稱中心的橫坐標.9、A【解析】
對復數進行化簡,由于為純虛數,則化簡后的復數形式中,實部為0,得到的值,從而得到復數.【詳解】因為為純虛數,所以,得所以.故選A項【點睛】本題考查復數的四則運算,純虛數的概念,屬于簡單題.10、C【解析】
設切點為,則,由于直線經過點,可得切線的斜率,再根據導數的幾何意義求出曲線在點處的切線斜率,建立關于的方程,從而可求方程.【詳解】若直線與曲線切于點,則,又∵,∴,∴,解得,,∴過點與曲線相切的直線方程為或,故選C.【點睛】本題主要考查了利用導數求曲線上過某點切線方程的斜率,求解曲線的切線的方程,其中解答中熟記利用導數的幾何意義求解切線的方程是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.11、D【解析】
利用輔助角公式,化簡函數的解析式,再根據正弦函數的單調性,并采用整體法,可得結果.【詳解】因為,由,解得,即函數的增區間為,所以當時,增區間的一個子集為.故選D.【點睛】本題考查了輔助角公式,考查正弦型函數的單調遞增區間,重點在于把握正弦函數的單調性,同時對于整體法的應用,使問題化繁為簡,難度較易.12、A【解析】
因為,所以排除C、D.當從負方向趨近于0時,,可得.故選A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
對函數求導后,代入切點的橫坐標得到切線斜率,然后根據直線方程的點斜式,即可寫出切線方程.【詳解】因為,所以,從而切線的斜率,所以切線方程為,即.故答案為:【點睛】本題主要考查過曲線上一點的切線方程的求法,屬基礎題.14、210【解析】
轉化,只有中含有,即得解.【詳解】只有中含有,其中的系數為故答案為:210【點睛】本題考查了二項式系數的求解,考查了學生概念理解,轉化劃歸,數學運算的能力,屬于中檔題.15、【解析】試題分析:由坐標系可知考點:復數運算16、28【解析】
將已知式轉化為,則的展開式中的系數中的系數,根據二項式展開式可求得其值.【詳解】,所以的展開式中的系數就是中的系數,而中的系數為,展開式中的系數為故答案為:28.【點睛】本題考查二項式展開式中的某特定項的系數,關鍵在于將原表達式化簡將三項的冪的形式轉化為可求的二項式的形式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)有99%把握認為愿意參加新生接待工作與性別有關;(2)詳見解析.【解析】
(1)計算得到,由此可得結論;(2)根據分層抽樣原則可得男生和女生人數,由超幾何分布概率公式可求得的所有可能取值所對應的概率,由此得到分布列;根據數學期望計算公式計算可得期望.【詳解】(1)∵的觀測值,有的把握認為愿意參加新生接待工作與性別有關.(2)根據分層抽樣方法得:男生有人,女生有人,選取的人中,男生有人,女生有人.則的可能取值有,,,,,的分布列為:.【點睛】本題考查獨立性檢驗、分層抽樣、超幾何分布的分布列和數學期望的求解;關鍵是能夠明確隨機變量服從于超幾何分布,進而利用超幾何分布概率公式求得隨機變量每個取值所對應的概率.18、(1);(2)見解析;(3)見解析【解析】
(1)需滿足恒成立,只需即可;(2)根據的單調性,構造新函數,并令,根據的單調性即可得證;(3)將問題轉化為證明有唯一實數解,對求導,判斷其單調性,結合題目條件與不等式的放縮,即可得證.【詳解】;令,則恒成立;,;的取值范圍是;(2)證明:由(1)知,在上單調遞減,在上單調遞增;;令,;則;令,則;;;(3)證明:,,要證明有唯一實數解;當時,;當時,;即對于任意實數,一定有解;;當時,有兩個極值點;函數在,,上單調遞增,在上單調遞減;又;只需,在時恒成立;只需;令,其中一個正解是;,;單調遞增,,(1);;;綜上得證.【點睛】本題考查了利用導數研究函數的單調性,考查了利用導數證明不等式,考查了轉化思想、不等式的放縮,屬難題.19、(1)(2)是,【解析】
(1)設,根據條件可求出的坐標,再利用在橢圓上,代入橢圓方程求出即可;(2)設運用勾股定理和點滿足橢圓方程,求出,,再利用焦半徑公式表示出,進而求出周長為定值.【詳解】(1)設,因為,即則,即,因為均在上,代入得,解得,所以橢圓的方程為;(2)由(1)得,作出示意圖,設切點為,則,同理即,所以,又,則的周長,所以周長為定值.【點睛】標準方程的求解,橢圓中的定值問題,考查焦半徑公式的運用,考查邏輯推理能力和運算求解能力,難度較難.20、(1)證明見解析(2)【解析】
(1)設出直線的方程,與橢圓方程聯立,利用根與系數的關系求出點的橫坐標即可證出;(2)根據線段的垂直平分線求出點的坐標,即可求出的面積,再表示出的面積,由與的面積相等列式,即可解出直線的斜率.【詳解】(1)由題意,得,直線()設,,聯立消去,得,顯然,,則點的橫坐標,因為,所以點在軸的右側.(2)由(1)得點的縱坐標.即.所以線段的垂直平分線方程為:.令,得;令,得.所以的面積,的面積.因為與的面積相等,所以,解得.所以當與的面積相等時,直線的斜率.【點睛】本題主要考查直線與橢圓的位置關系的應用、根與系數的關系應用,以及三角形的面積的計算,意在考查學生的數學運算能力,屬于中檔題.21、(1)(2)的遞減區間為和【解析】
(1)化簡函數,代入,計算即可;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/ZHCA 014-2022化妝品抗皺功效評價斑馬魚幼魚尾鰭皺縮抑制率法
- 2025西藏大學輔導員考試試題及答案
- 2025濮陽石油化工職業技術學院輔導員考試試題及答案
- 2025蚌埠工商學院輔導員考試試題及答案
- 休克急救的護理
- 講究衛生提升自我
- 設計性心理學核心概念解析
- 神經免疫疾病基礎與診療進展
- 產品設計畢設指導
- 文化產業發展與管理2025年考試試卷及答案
- 田畝轉戶協議書
- 庭院綠化養護合同協議書
- 2025年MySQL開發趨勢試題及答案研究
- 違約就業協議書
- 《人工智能通識導論(慕課版)》全套教學課件
- 烘培創業合伙協議書
- 2025年信息系統管理知識考試試題及答案
- 馬法理學試題及答案
- 2025年全國保密教育線上培訓考試試題庫附完整答案(奪冠系列)含答案詳解
- 視頻制作拍攝服務方案投標文件(技術方案)
- 量子計算中的量子比特穩定性研究-全面剖析
評論
0/150
提交評論