




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
曲靖市重點中學2024屆高考沖刺押題(最后一卷)數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.i是虛數單位,若,則乘積的值是()A.-15 B.-3 C.3 D.152.雙曲線:(),左焦點到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.3.已知,,且是的充分不必要條件,則的取值范圍是()A. B. C. D.4.已知集合,,則為()A. B. C. D.5.已知類產品共兩件,類產品共三件,混放在一起,現需要通過檢測將其區分開來,每次隨機檢測一件產品,檢測后不放回,直到檢測出2件類產品或者檢測出3件類產品時,檢測結束,則第一次檢測出類產品,第二次檢測出類產品的概率為()A. B. C. D.6.記單調遞增的等比數列的前項和為,若,,則()A. B. C. D.7.設a,b,c為正數,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不修要條件8.南宋數學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數列與一般等差數列不同,前后兩項之差并不相等,但是逐項差數之差或者高次差成等差數列對這類高階等差數列的研究,在楊輝之后一般稱為“垛積術”.現有高階等差數列,其前7項分別為1,4,8,14,23,36,54,則該數列的第19項為()(注:)A.1624 B.1024 C.1198 D.15609.已知函數(,)的一個零點是,函數圖象的一條對稱軸是直線,則當取得最小值時,函數的單調遞增區間是()A.() B.()C.() D.()10.設a=log73,,c=30.7,則a,b,c的大小關系是()A. B. C. D.11.在正方體中,球同時與以為公共頂點的三個面相切,球同時與以為公共頂點的三個面相切,且兩球相切于點.若以為焦點,為準線的拋物線經過,設球的半徑分別為,則()A. B. C. D.12.中國的國旗和國徽上都有五角星,正五角星與黃金分割有著密切的聯系,在如圖所示的正五角星中,以、、、、為頂點的多邊形為正五邊形,且,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在直角三角形中,為直角,,點在線段上,且,若,則的正切值為_____.14.觀察下列式子,,,,……,根據上述規律,第個不等式應該為__________.15.已知隨機變量服從正態分布,若,則_________.16.在的展開式中,各項系數之和為,則展開式中的常數項為__________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)若,求證:.(2)討論函數的極值;(3)是否存在實數,使得不等式在上恒成立?若存在,求出的最小值;若不存在,請說明理由.18.(12分)在直角坐標系中,直線的參數方程是為參數),曲線的參數方程是為參數),以為極點,軸的非負半軸為極軸建立極坐標系.(1)求直線和曲線的極坐標方程;(2)已知射線與曲線交于兩點,射線與直線交于點,若的面積為1,求的值和弦長.19.(12分)如圖,是矩形,的頂點在邊上,點,分別是,上的動點(的長度滿足需求).設,,,且滿足.(1)求;(2)若,,求的最大值.20.(12分)網絡看病就是國內或者國外的單個人、多個人或者單位通過國際互聯網或者其他局域網對自我、他人或者某種生物的生理疾病或者機器故障進行查找詢問、診斷治療、檢查修復的一種新興的看病方式.因此,實地看病與網絡看病便成為現在人們的兩種看病方式,最近某信息機構調研了患者對網絡看病,實地看病的滿意程度,在每種看病方式的患者中各隨機抽取15名,將他們分成兩組,每組15人,分別對網絡看病,實地看病兩種方式進行滿意度測評,根據患者的評分(滿分100分)繪制了如圖所示的莖葉圖:(1)根據莖葉圖判斷患者對于網絡看病、實地看病那種方式的滿意度更高?并說明理由;(2)若將大于等于80分視為“滿意”,根據莖葉圖填寫下面的列聯表:滿意不滿意總計網絡看病實地看病總計并根據列聯表判斷能否有的把握認為患者看病滿意度與看病方式有關?(3)從網絡看病的評價“滿意”的人中隨機抽取2人,求這2人平分都低于90分的概率.附,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821.(12分)如圖,在三棱柱中,是邊長為2的菱形,且,是矩形,,且平面平面,點在線段上移動(不與重合),是的中點.(1)當四面體的外接球的表面積為時,證明:.平面(2)當四面體的體積最大時,求平面與平面所成銳二面角的余弦值.22.(10分)如圖,在直角中,,通過以直線為軸順時針旋轉得到().點為斜邊上一點.點為線段上一點,且.(1)證明:平面;(2)當直線與平面所成的角取最大值時,求二面角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】,∴,選B.2、B【解析】
首先求得雙曲線的一條漸近線方程,再利用左焦點到漸近線的距離為2,列方程即可求出,進而求出漸近線的方程.【詳解】設左焦點為,一條漸近線的方程為,由左焦點到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B【點睛】本題考查雙曲線的漸近線的方程,考查了點到直線的距離公式,屬于中檔題.3、D【解析】
“是的充分不必要條件”等價于“是的充分不必要條件”,即中變量取值的集合是中變量取值集合的真子集.【詳解】由題意知:可化簡為,,所以中變量取值的集合是中變量取值集合的真子集,所以.【點睛】利用原命題與其逆否命題的等價性,對是的充分不必要條件進行命題轉換,使問題易于求解.4、C【解析】
分別求解出集合的具體范圍,由集合的交集運算即可求得答案.【詳解】因為集合,,所以故選:C【點睛】本題考查對數函數的定義域求法、一元二次不等式的解法及集合的交集運算,考查基本運算能力.5、D【解析】
根據分步計數原理,由古典概型概率公式可得第一次檢測出類產品的概率,不放回情況下第二次檢測出類產品的概率,即可得解.【詳解】類產品共兩件,類產品共三件,則第一次檢測出類產品的概率為;不放回情況下,剩余4件產品,則第二次檢測出類產品的概率為;故第一次檢測出類產品,第二次檢測出類產品的概率為;故選:D.【點睛】本題考查了分步乘法計數原理的應用,古典概型概率計算公式的應用,屬于基礎題.6、C【解析】
先利用等比數列的性質得到的值,再根據的方程組可得的值,從而得到數列的公比,進而得到數列的通項和前項和,根據后兩個公式可得正確的選項.【詳解】因為為等比數列,所以,故即,由可得或,因為為遞增數列,故符合.此時,所以或(舍,因為為遞增數列).故,.故選C.【點睛】一般地,如果為等比數列,為其前項和,則有性質:(1)若,則;(2)公比時,則有,其中為常數且;(3)為等比數列()且公比為.7、B【解析】
根據不等式的性質,結合充分條件和必要條件的定義進行判斷即可.【詳解】解:,,為正數,當,,時,滿足,但不成立,即充分性不成立,若,則,即,即,即,成立,即必要性成立,則“”是“”的必要不充分條件,故選:.【點睛】本題主要考查充分條件和必要條件的判斷,結合不等式的性質是解決本題的關鍵.8、B【解析】
根據高階等差數列的定義,求得等差數列的通項公式和前項和,利用累加法求得數列的通項公式,進而求得.【詳解】依題意:1,4,8,14,23,36,54,……兩兩作差得:3,4,6,9,13,18,……兩兩作差得:1,2,3,4,5,……設該數列為,令,設的前項和為,又令,設的前項和為.易,,進而得,所以,則,所以,所以.故選:B【點睛】本小題主要考查新定義數列的理解和運用,考查累加法求數列的通項公式,考查化歸與轉化的數學思想方法,屬于中檔題.9、B【解析】
根據函數的一個零點是,得出,再根據是對稱軸,得出,求出的最小值與對應的,寫出即可求出其單調增區間.【詳解】依題意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值為.因為,所以().又,所以,所以,令(),則().因此,當取得最小值時,的單調遞增區間是().故選:B【點睛】此題考查三角函數的對稱軸和對稱點,在對稱軸處取得最值,對稱點處函數值為零,屬于較易題目.10、D【解析】
,,得解.【詳解】,,,所以,故選D【點睛】比較不同數的大小,找中間量作比較是一種常見的方法.11、D【解析】
由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離因此球內切于正方體,設,兩球球心和公切點都在體對角線上,通過幾何關系可轉化出,進而求解【詳解】根據拋物線的定義,點到點的距離與到直線的距離相等,其中點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離,因此球內切于正方體,不妨設,兩個球心和兩球的切點均在體對角線上,兩個球在平面處的截面如圖所示,則,所以.又因為,因此,得,所以.故選:D【點睛】本題考查立體圖與平面圖的轉化,拋物線幾何性質的使用,內切球的性質,數形結合思想,轉化思想,直觀想象與數學運算的核心素養12、A【解析】
利用平面向量的概念、平面向量的加法、減法、數乘運算的幾何意義,便可解決問題.【詳解】解:.故選:A【點睛】本題以正五角星為載體,考查平面向量的概念及運算法則等基礎知識,考查運算求解能力,考查化歸與轉化思想,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】
在直角三角形中設,,,利用兩角差的正切公式求解.【詳解】設,,則,故.故答案為:3【點睛】此題考查在直角三角形中求角的正切值,關鍵在于合理構造角的和差關系,其本質是利用兩角差的正切公式求解.14、【解析】
根據題意,依次分析不等式的變化規律,綜合可得答案.【詳解】解:根據題意,對于第一個不等式,,則有,對于第二個不等式,,則有,對于第三個不等式,,則有,依此類推:第個不等式為:,故答案為.【點睛】本題考查歸納推理的應用,分析不等式的變化規律.15、0.4【解析】
因為隨機變量ζ服從正態分布,利用正態曲線的對稱性,即得解.【詳解】因為隨機變量ζ服從正態分布所以正態曲線關于對稱,所.【點睛】本題考查了正態分布曲線的對稱性在求概率中的應用,考查了學生概念理解,數形結合,數學運算的能力,屬于基礎題.16、【解析】
利用展開式各項系數之和求得的值,由此寫出展開式的通項,令指數為零求得參數的值,代入通項計算即可得解.【詳解】的展開式各項系數和為,得,所以,的展開式通項為,令,得,因此,展開式中的常數項為.故答案為:.【點睛】本題考查二項展開式中常數項的計算,涉及二項展開式中各項系數和的計算,考查計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)見解析;(3)存在,1.【解析】
(1),求出單調區間,進而求出,即可證明結論;(2)對(或)是否恒成立分類討論,若恒成立,沒有極值點,若不恒成立,求出的解,即可求出結論;(3)令,可證恒成立,而,由(2)得,在為減函數,在上單調遞減,在都存在,不滿足,當時,設,且,只需求出在單調遞增時的取值范圍即可.【詳解】(1),,,當時,,當時,,∴,故.(2)由題知,,,①當時,,所以在上單調遞減,沒有極值;②當時,,得,當時,;當時,,所以在上單調遞減,在上單調遞增.故在處取得極小值,無極大值.(3)不妨令,設在恒成立,在單調遞增,,在恒成立,所以,當時,,由(2)知,當時,在上單調遞減,恒成立;所以不等式在上恒成立,只能.當時,,由(1)知在上單調遞減,所以,不滿足題意.當時,設,因為,所以,,即,所以在上單調遞增,又,所以時,恒成立,即恒成立,故存在,使得不等式在上恒成立,此時的最小值是1.【點睛】本題考查導數綜合應用,涉及到函數的單調性、極值最值、不等式證明,考查分類討論思想,意在考查直觀想象、邏輯推理、數學計算能力,屬于較難題.18、(1),;(2).【解析】
(1)先把直線和曲線的參數方程化成普通方程,再化成極坐標方程;(2)聯立極坐標方程,根據極徑的幾何意義可得,再由面積可解得極角,從而可得.【詳解】(1)直線的參數方程是為參數),消去參數得直角坐標方程為:.轉換為極坐標方程為:,即.曲線的參數方程是(為參數),轉換為直角坐標方程為:,化為一般式得化為極坐標方程為:.
(2)由于,得,.所以,所以,由于,所以,所以.【點睛】本題主要考查參數方程與普通方程的互化、直角坐標方程與極坐標方程的互化,熟記公式即可,屬于常考題型.19、(1)(2)【解析】
(1)利用正弦定理和余弦定理化簡,根據勾股定理逆定理求得.(2)設,由此求得的表達式,利用三角函數最值的求法,求得的最大值.【詳解】(1)設,,,由,根據正弦定理和余弦定理得.化簡整理得.由勾股定理逆定理得.(2)設,,由(1)的結論知.在中,,由,所以.在中,,由,所以.所以,由,所以當,即時,取得最大值,且最大值為.【點睛】本小題考查正弦定理,余弦定理,勾股定理,解三角形,三角函數性質及其三角恒等變換等基礎知識;考查運算求解能力,推理論證能力,化歸與轉換思想,應用意識.20、(1)實地看病的滿意度更高,理由見解析;(2)列聯表見解析,有;(3).【解析】
(1)對實地看病滿意度更高,可以從莖葉圖四個方面選一個回答即可;(2)先完成列聯表,再由獨立性檢驗得有的把握認為患者看病滿意度與看病方式有關;(3)利用古典概型的概率公式求得這2人平分都低于90分的概率.【詳解】(1)對實地看病滿意度更高,理由如下:(i)由莖葉圖可知:在網絡看病中,有的患者滿意度評分低于80分;在實地看病中,有的患者評分高于80分,因此患者對實地看病滿意度更高.(ii)由莖葉圖可知:網絡看病滿意度評分的中位數為73分,實地看病評分的中位數為87分,因此患者對實地看病滿意度更高.(iii)由莖葉圖可知:網絡看病的滿意度評分平均分低于80分;實地看病的滿意度的評分平均分高于80分,因此患者對實地看病滿意度更高.(iV)由莖葉圖可知:網絡看病的滿意度評分在莖6上的最多,關于莖7大致呈對稱分布;實地看病的評分分布在莖8,上的最多,關于莖8大致呈對稱分布,又兩種看病方式打分的分布區間相同,故可以認為實地看病評分比網絡看病打分更高,因此實地看病的滿意度更高.以上給出了4種理由,考生答出其中任意一一種或其他合理理由均可得分.(2)參加網絡看病滿意度調查的15名患者中共有5名對網絡看病滿意,10名對網絡看病不滿意;參加實地看病滿意度調查的15名患者中共有10名對實地看病滿意,5名對實地看病不滿意.故完成列聯表如下:滿意不滿意總計網絡看病51015實地看病10515總計151530于是,所以有的把握認為患者看病滿意度與看病方式有關.(3)網絡看病的評價的分數依次為82,85,85,88,92,由小到大分別記為,從網絡看病的評價“滿意”的人中隨機抽取2人,所有可能情況有:;;;共10種,其中,這2人評分都低于90分的情況有:;;共6種,故由古典概型公式得這2人評分都低于90分的概率.【點睛】本題主要考查莖葉圖的應用和獨立性檢驗,考查古典概型的概率的計算,意在考查學生對這些知識的理解掌握水平.21、(1)證明見解析(2)【解析】
(1)由題意,先求得為的中點,再證明平面平面,進而可得結論;(2)由題意,當點位于點時,四面體的體積最大,再建立空間直角坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年全新版注冊會計師考試《會計》租賃會計真題演練試題含答案
- 口腔醫師技能課件
- 疫情后線下演出市場復蘇2025年數字音樂劇發展趨勢報告
- 口才課件教學課件
- 住宅裝飾裝修管理辦法
- 產品嚴控品質管理辦法
- 臨沂維修基金管理辦法
- 人才集團投資管理辦法
- 信息安全工作管理辦法
- 中資機構客戶管理辦法
- 腦梗塞急救流程與公共衛生策略
- 疼痛管理護理試題及答案
- 軟式內鏡清洗消毒技術規范2025
- 2025安徽蚌埠市城市投資控股集團有限公司所屬公司社會招聘11人筆試參考題庫附帶答案詳解
- 人行雨棚施工方案
- 刑事和解協議書自訴
- 三方委托收款協議范本8篇
- 奶茶服務協議合同
- 書籍保密協議書范文
- 基層護理進修后回院匯報
- 護理查對制度安全警示教育
評論
0/150
提交評論