




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省聊城市陽谷縣重點名校2024屆中考數學考前最后一卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列運算正確的是()A.a3?a2=a6 B.(a2)3=a5 C.=3 D.2+=22.已知下列命題:①對頂角相等;②若a>b>0,則<;③對角線相等且互相垂直的四邊形是正方形;④拋物線y=x2﹣2x與坐標軸有3個不同交點;⑤邊長相等的多邊形內角都相等.從中任選一個命題是真命題的概率為()A. B. C. D.3.在2016年泉州市初中體育中考中,隨意抽取某校5位同學一分鐘跳繩的次數分別為:158,160,154,158,170,則由這組數據得到的結論錯誤的是()A.平均數為160 B.中位數為158 C.眾數為158 D.方差為20.34.2cos30°的值等于()A.1 B. C. D.25.下列關于統計與概率的知識說法正確的是()A.武大靖在2018年平昌冬奧會短道速滑500米項目上獲得金牌是必然事件B.檢測100只燈泡的質量情況適宜采用抽樣調查C.了解北京市人均月收入的大致情況,適宜采用全面普查D.甲組數據的方差是0.16,乙組數據的方差是0.24,說明甲組數據的平均數大于乙組數據的平均數6.的一個有理化因式是()A. B. C. D.7.下列計算正確的是()A.﹣5x﹣2x=﹣3x B.(a+3)2=a2+9 C.(﹣a3)2=a5 D.a2p÷a﹣p=a3p8.估算的值是在()A.2和3之間 B.3和4之間 C.4和5之間 D.5和6之間9.如圖,內接于,若,則A. B. C. D.10.如圖,正方形ABCD內接于圓O,AB=4,則圖中陰影部分的面積是()A. B. C. D.11.一個數和它的倒數相等,則這個數是()A.1 B.0 C.±1 D.±1和012.如圖所示:有理數在數軸上的對應點,則下列式子中錯誤的是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.為增強學生身體素質,提高學生足球運動競技水平,我市開展“市長杯”足球比賽,賽制為單循環形式(每兩隊之間賽一場).現計劃安排21場比賽,應邀請多少個球隊參賽?設邀請x個球隊參賽,根據題意,可列方程為_____.14.一組數據4,3,5,x,4,5的眾數和中位數都是4,則x=_____.15.如圖,△ABC中,D、E分別在AB、AC上,DE∥BC,AD:AB=1:3,則△ADE與△ABC的面積之比為______.16.將一張長方形紙片折疊成如圖所示的形狀,若∠DBC=56°,則∠1=_____°.17.已知一個多邊形的每一個內角都是,則這個多邊形是_________邊形.18.如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點,將△ABP沿BP翻折至△EBP,PE與CD相交于點O,BE與CD相交于點G,且OE=OD,則AP的長為__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在頂點為P的拋物線y=a(x-h)2+k(a≠0)的對稱軸1的直線上取點A(h,k+),過A作BC⊥l交拋物線于B、C兩點(B在C的左側),點和點A關于點P對稱,過A作直線m⊥l.又分別過點B,C作直線BE⊥m和CD⊥m,垂足為E,D.在這里,我們把點A叫此拋物線的焦點,BC叫此拋物線的直徑,矩形BCDE叫此拋物線的焦點矩形.(1)直接寫出拋物線y=x2的焦點坐標以及直徑的長.(2)求拋物線y=x2-x+的焦點坐標以及直徑的長.(3)已知拋物線y=a(x-h)2+k(a≠0)的直徑為,求a的值.(4)①已知拋物線y=a(x-h)2+k(a≠0)的焦點矩形的面積為2,求a的值.②直接寫出拋物線y=x2-x+的焦點短形與拋物線y=x2-2mx+m2+1公共點個數分別是1個以及2個時m的值.20.(6分)計算:(1)(2)2﹣|﹣4|+3﹣1×6+20;(2).21.(6分)如圖,在矩形ABCD中,AD=4,點E在邊AD上,連接CE,以CE為邊向右上方作正方形CEFG,作FH⊥AD,垂足為H,連接AF.(1)求證:FH=ED;(2)當AE為何值時,△AEF的面積最大?22.(8分)如圖,某游樂園有一個滑梯高度AB,高度AC為3米,傾斜角度為58°.為了改善滑梯AB的安全性能,把傾斜角由58°減至30°,調整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)(參考數據:sin58°=0.85,cos58°=0.53,tan58°=1.60)23.(8分)從化市某中學初三(1)班數學興趣小組為了解全校800名初三學生的“初中畢業選擇升學和就業”情況,特對本班50名同學們進行調查,根據全班同學提出的3個主要觀點:A高中,B中技,C就業,進行了調查(要求每位同學只選自己最認可的一項觀點);并制成了扇形統計圖(如圖).請回答以下問題:(1)該班學生選擇觀點的人數最多,共有人,在扇形統計圖中,該觀點所在扇形區域的圓心角是度.(2)利用樣本估計該校初三學生選擇“中技”觀點的人數.(3)已知該班只有2位女同學選擇“就業”觀點,如果班主任從該觀點中,隨機選取2位同學進行調查,那么恰好選到這2位女同學的概率是多少?(用樹形圖或列表法分析解答).24.(10分)如圖,∠A=∠D,∠B=∠E,AF=DC.求證:BC=EF.25.(10分)如圖,M、N為山兩側的兩個村莊,為了兩村交通方便,根據國家的惠民政策,政府決定打一直線涵洞.工程人員為了計算工程量,必須計算M、N兩點之間的直線距離,選擇測量點A、B、C,點B、C分別在AM、AN上,現測得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N兩點之間的距離.26.(12分)某品牌牛奶供應商提供A,B,C,D四種不同口味的牛奶供學生飲用.某校為了了解學生對不同口味的牛奶的喜好,對全校訂牛奶的學生進行了隨機調查,并根據調查結果繪制了如下兩幅不完整的統計圖.根據統計圖的信息解決下列問題:(1)本次調查的學生有多少人?(2)補全上面的條形統計圖;(3)扇形統計圖中C對應的中心角度數是;(4)若該校有600名學生訂了該品牌的牛奶,每名學生每天只訂一盒牛奶,要使學生能喝到自己喜歡的牛奶,則該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約多少盒?27.(12分)在平面直角坐標系中,O為原點,點A(3,0),點B(0,4),把△ABO繞點A順時針旋轉,得△AB′O′,點B,O旋轉后的對應點為B′,O.(1)如圖1,當旋轉角為90°時,求BB′的長;(2)如圖2,當旋轉角為120°時,求點O′的坐標;(3)在(2)的條件下,邊OB上的一點P旋轉后的對應點為P′,當O′P+AP′取得最小值時,求點P′的坐標.(直接寫出結果即可)
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
結合選項分別進行冪的乘方和積的乘方、同底數冪的乘法、實數的運算等運算,然后選擇正確選項.【詳解】解:A.a3a2=a5,原式計算錯誤,故本選項錯誤;B.(a2)3=a6,原式計算錯誤,故本選項錯誤;C.=3,原式計算正確,故本選項正確;D.2和不是同類項,不能合并,故本選項錯誤.故選C.【點睛】本題考查了冪的乘方與積的乘方,實數的運算,同底數冪的乘法,解題的關鍵是冪的運算法則.2、B【解析】∵①對頂角相等,故此選項正確;②若a>b>0,則<,故此選項正確;③對角線相等且互相垂直平分的四邊形是正方形,故此選項錯誤;④拋物線y=x2﹣2x與坐標軸有2個不同交點,故此選項錯誤;⑤邊長相等的多邊形內角不一定都相等,故此選項錯誤;∴從中任選一個命題是真命題的概率為:.故選:B.3、D【解析】解:A.平均數為(158+160+154+158+170)÷5=160,正確,故本選項不符合題意;B.按照從小到大的順序排列為154,158,158,160,170,位于中間位置的數為158,故中位數為158,正確,故本選項不符合題意;C.數據158出現了2次,次數最多,故眾數為158,正確,故本選項不符合題意;D.這組數據的方差是S2=[(154﹣160)2+2×(158﹣160)2+(160﹣160)2+(170﹣160)2]=28.8,錯誤,故本選項符合題意.故選D.點睛:本題考查了眾數、平均數、中位數及方差,解題的關鍵是掌握它們的定義,難度不大.4、C【解析】分析:根據30°角的三角函數值代入計算即可.詳解:2cos30°=2×=.故選C.點睛:此題主要考查了特殊角的三角函數值的應用,熟記30°、45°、60°角的三角函數值是解題關鍵.5、B【解析】
根據事件發生的可能性的大小,可判斷A,根據調查事物的特點,可判斷B;根據調查事物的特點,可判斷C;根據方差的性質,可判斷D.【詳解】解:A、武大靖在2018年平昌冬奧會短道速滑500米項目上可能獲得獲得金牌,也可能不獲得金牌,是隨機事件,故A說法不正確;B、燈泡的調查具有破壞性,只能適合抽樣調查,故檢測100只燈泡的質量情況適宜采用抽樣調查,故B符合題意;C、了解北京市人均月收入的大致情況,調查范圍廣適合抽樣調查,故C說法錯誤;D、甲組數據的方差是0.16,乙組數據的方差是0.24,說明甲組數據的波動比乙組數據的波動小,不能說明平均數大于乙組數據的平均數,故D說法錯誤;故選B.【點睛】本題考查隨機事件及方差,解決本題需要正確理解必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發生的事件.不可能事件是指在一定條件下,一定不發生的事件,不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.方差越小波動越小.6、B【解析】
找出原式的一個有理化因式即可.【詳解】的一個有理化因式是,故選B.【點睛】此題考查了分母有理化,熟練掌握有理化因式的取法是解本題的關鍵.7、D【解析】
直接利用合并同類項法則以及完全平方公式和整式的乘除運算法則分別計算即可得出答案.【詳解】解:A.﹣5x﹣2x=﹣7x,故此選項錯誤;B.(a+3)2=a2+6a+9,故此選項錯誤;C.(﹣a3)2=a6,故此選項錯誤;D.a2p÷a﹣p=a3p,正確.故選D.【點睛】本題主要考查了合并同類項以及完全平方公式和整式的乘除運算,正確掌握運算法則是解題的關鍵.8、C【解析】
求出<<,推出4<<5,即可得出答案.【詳解】∵<<,∴4<<5,∴的值是在4和5之間.故選:C.【點睛】本題考查了估算無理數的大小和二次根式的性質,解此題的關鍵是得出<<,題目比較好,難度不大.9、B【解析】
根據圓周角定理求出,根據三角形內角和定理計算即可.【詳解】解:由圓周角定理得,,,,故選:B.【點睛】本題考查的是三角形的外接圓與外心,掌握圓周角定理、等腰三角形的性質、三角形內角和定理是解題的關鍵.10、B【解析】
連接OA、OB,利用正方形的性質得出OA=ABcos45°=2,根據陰影部分的面積=S⊙O-S正方形ABCD列式計算可得.【詳解】解:連接OA、OB,∵四邊形ABCD是正方形,∴∠AOB=90°,∠OAB=45°,∴OA=ABcos45°=4×=2,所以陰影部分的面積=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.故選B.【點睛】本題主要考查扇形的面積計算,解題的關鍵是熟練掌握正方形的性質和圓的面積公式.11、C【解析】
根據倒數的定義即可求解.【詳解】的倒數等于它本身,故符合題意.
故選:.【點睛】主要考查倒數的概念及性質.倒數的定義:若兩個數的乘積是1,我們就稱這兩個數互為倒數.12、C【解析】
從數軸上可以看出a、b都是負數,且a<b,由此逐項分析得出結論即可.【詳解】由數軸可知:a<b<0,A、兩數相乘,同號得正,ab>0是正確的;
B、同號相加,取相同的符號,a+b<0是正確的;
C、a<b<0,,故選項是錯誤的;
D、a-b=a+(-b)取a的符號,a-b<0是正確的.
故選:C.【點睛】此題考查有理數的混合運算,數軸,解題關鍵在于結合數軸進行解答.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x(x﹣1)=1【解析】【分析】賽制為單循環形式(每兩隊之間都賽一場),x個球隊比賽總場數為x(x﹣1),即可列方程.【詳解】有x個隊,每個隊都要賽(x﹣1)場,但兩隊之間只有一場比賽,由題意得:x(x﹣1)=1,故答案為x(x﹣1)=1.【點睛】本題考查了一元二次方程的應用,弄清題意,找準等量關系列出方程是解題的關鍵.14、1【解析】
一組數據中出現次數最多的數據叫做眾數,由此可得出答案.【詳解】∵一組數據1,3,5,x,1,5的眾數和中位數都是1,∴x=1,故答案為1.【點睛】本題考查了眾數的知識,解答本題的關鍵是掌握眾數的定義.15、1:1.【解析】試題分析:由DE∥BC,可得△ADE∽△ABC,根據相似三角形的面積之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.考點:相似三角形的性質.16、62【解析】
根據折疊的性質得出∠2=∠ABD,利用平角的定義解答即可.【詳解】解:如圖所示:由折疊可得:∠2=∠ABD,∵∠DBC=56°,∴∠2+∠ABD+56°=180°,解得:∠2=62°,∵AE//BC,∴∠1=∠2=62°,故答案為62.【點睛】本題考查了折疊變換的知識以及平行線的性質的運用,根據折疊的性質得出∠2=∠ABD是關鍵.17、十【解析】
先求出每一個外角的度數,再根據邊數=360°÷外角的度數計算即可.【詳解】解:180°﹣144°=36°,360°÷36°=1,∴這個多邊形的邊數是1.故答案為十.【點睛】本題主要考查了多邊形的內角與外角的關系,求出每一個外角的度數是關鍵.18、4.1【解析】解:如圖所示:∵四邊形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,根據題意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=1,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,設AP=EP=x,則PD=GE=6﹣x,DG=x,∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,根據勾股定理得:BC2+CG2=BG2,即62+(1﹣x)2=(x+2)2,解得:x=4.1,∴AP=4.1;故答案為4.1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)4(1)4(3)(4)①a=±;②當m=1-或m=5+時,1個公共點,當1-<m≤1或5≤m<5+時,1個公共點,【解析】
(1)根據題意可以求得拋物線y=x1的焦點坐標以及直徑的長;(1)根據題意可以求得拋物線y=x1-x+的焦點坐標以及直徑的長;(3)根據題意和y=a(x-h)1+k(a≠0)的直徑為,可以求得a的值;(4)①根據題意和拋物線y=ax1+bx+c(a≠0)的焦點矩形的面積為1,可以求得a的值;②根據(1)中的結果和圖形可以求得拋物線y=x1-x+的焦點矩形與拋物線y=x1-1mx+m1+1公共點個數分別是1個以及1個時m的值.【詳解】(1)∵拋物線y=x1,∴此拋物線焦點的橫坐標是0,縱坐標是:0+=1,∴拋物線y=x1的焦點坐標為(0,1),將y=1代入y=x1,得x1=-1,x1=1,∴此拋物線的直徑是:1-(-1)=4;(1)∵y=x1-x+=(x-3)1+1,∴此拋物線的焦點的橫坐標是:3,縱坐標是:1+=3,∴焦點坐標為(3,3),將y=3代入y=(x-3)1+1,得3=(x-3)1+1,解得,x1=5,x1=1,∴此拋物線的直徑時5-1=4;(3)∵焦點A(h,k+),∴k+=a(x-h)1+k,解得,x1=h+,x1=h-,∴直徑為:h+-(h-)==,解得,a=±,即a的值是;(4)①由(3)得,BC=,又CD=A'A=.所以,S=BC?CD=?==1.解得,a=±;②當m=1-或m=5+時,1個公共點,當1-<m≤1或5≤m<5+時,1個公共點,理由:由(1)知拋,物線y=x1-x+的焦點矩形頂點坐標分別為:B(1,3),C(5,3),E(1,1),D(5,1),當y=x1-1mx+m1+1=(x-m)1+1過B(1,3)時,m=1-或m=1+(舍去),過C(5,3)時,m=5-(舍去)或m=5+,∴當m=1-或m=5+時,1個公共點;當1-<m≤1或5≤m<5+時,1個公共點.由圖可知,公共點個數隨m的變化關系為當m<1-時,無公共點;當m=1-時,1個公共點;當1-<m≤1時,1個公共點;當1<m<5時,3個公共點;當5≤m<5+時,1個公共點;當m=5+時,1個公共點;當m>5+時,無公共點;由上可得,當m=1-或m=5+時,1個公共點;當1-<m≤1或5≤m<5+時,1個公共點.【點睛】考查了二次函數綜合題,解答本題的關鍵是明確題意,知道什么是拋物線的焦點、直徑、焦點四邊形,找出所求問題需要的條件,利用數形結合的思想和二次函數的性質、矩形的性質解答.20、(1)1;(2).【解析】
(1)先計算乘方、絕對值、負整數指數冪和零指數冪,再計算乘法,最后計算加減運算可得;(2)先將分子、分母因式分解,再計算乘法,最后計算減法即可得.【詳解】(1)原式=8-4+×6+1=8-4+2+1=1.(2)原式===.【點睛】本題主要考查實數和分式的混合運算,解題的關鍵是掌握絕對值性質、負整數指數冪、零指數冪及分式混合運算順序和運算法則.21、(1)證明見解析;(2)AE=2時,△AEF的面積最大.【解析】
(1)根據正方形的性質,可得EF=CE,再根據∠CEF=∠90°,進而可得∠FEH=∠DCE,結合已知條件∠FHE=∠D=90°,利用“AAS”即可證明△FEH≌△ECD,由全等三角形的性質可得FH=ED;(2)設AE=a,用含a的函數表示△AEF的面積,再利用函數的最值求面積最大值即可.【詳解】(1)證明:∵四邊形CEFG是正方形,∴CE=EF.∵∠FEC=∠FEH+∠CED=90°,∠DCE+∠CED=90°,∴∠FEH=∠DCE.在△FEH和△ECD中,EF=CE∠F∴△FEH≌△ECD,∴FH=ED.(2)解:設AE=a,則ED=FH=4-a,∴S△AEF=12AE·FH=12a(4-a)=-12∴當AE=2時,△AEF的面積最大.【點睛】本題考查了正方形性質、矩形性質以及全等三角形的判斷和性質和三角形面積有關的知識點,熟記全等三角形的各種判斷方法是解題的關鍵.22、調整后的滑梯AD比原滑梯AB增加2.5米【解析】試題分析:Rt△ABD中,根據30°的角所對的直角邊是斜邊的一半得到AD的長,然后在Rt△ABC中,求得AB的長后用即可求得增加的長度.試題解析:Rt△ABD中,∵AC=3米,∴AD=2AC=6(m)∵在Rt△ABC中,∴AD?AB=6?3.53≈2.5(m).∴調整后的滑梯AD比原滑梯AB增加2.5米.23、(4)A高中觀點.4.446;(4)456人;(4)16【解析】試題分析:(4)全班人數乘以選擇“A高中”觀點的百分比即可得到選擇“A高中”觀點的人數,用460°乘以選擇“A高中”觀點的百分比即可得到選擇“A高中”的觀點所在扇形區域的圓心角的度數;(4)用全校初三年級學生數乘以選擇“B中技”觀點的百分比即可估計該校初三學生選擇“中技”觀點的人數;(4)先計算出該班選擇“就業”觀點的人數為4人,則可判斷有4位女同學和4位男生選擇“就業”觀點,再列表展示44種等可能的結果數,找出出現4女的結果數,然后根據概率公式求解.試題解析:(4)該班學生選擇A高中觀點的人數最多,共有60%×50=4(人),在扇形統計圖中,該觀點所在扇形區域的圓心角是60%×460°=446°;(4)∵800×44%=456(人),∴估計該校初三學生選擇“中技”觀點的人數約是456人;(4)該班選擇“就業”觀點的人數=50×(4-60%-44%)=50×8%=4(人),則該班有4位女同學和4位男生選擇“就業”觀點,列表如下:共有44種等可能的結果數,其中出現4女的情況共有4種.所以恰好選到4位女同學的概率=212考點:4.列表法與樹狀圖法;4.用樣本估計總體;4.扇形統計圖.24、證明見解析.【解析】
想證明BC=EF,可利用AAS證明△ABC≌△DEF即可.【詳解】解:∵AF=DC,∴AF+FC=FC+CD,∴AC=FD,在△ABC和△DEF中,∴△ABC≌△DEF(AAS)∴BC=EF.【點睛】本題考查全等三角形的判定和性質,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.25、1.5千米【解析】
先根據相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性質解答即可【詳解】在△ABC與△AMN中,,,∴,∵∠A=∠A,∴△ABC∽△ANM,∴,即,解得MN=1.5(千米),因此,M、N兩點之間的直線距離是1.5千米.【點睛】此題考查相似三角形的應用,解題關鍵在于掌握運算法則26、(1)150人;(2)補圖見解析;(3)144°;(4)300盒.【解析】
(1)根據喜好A口味的牛奶的學生人數和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 多模態多端手機智能體Mobile-Agent
- 數據透視表講課件
- 提升團隊績效的溝通藝術
- 教育資源三方比價采購合同
- 生物醫藥公司部分股權出讓與研發合作合同
- 2025屆高三下學期5月語文押題試卷(含答案)
- 花都區中考二模語文試題(pdf版含答案)
- 教師的壓力管理與心理調適
- 智能制造廠廠長聘任與智能制造體系建設合同
- 水資源調查場調研委托協議
- 2024年西藏公安機關招聘警務輔助人員筆試真題
- 2025-2030中國顯示驅動芯片行業競爭風險及前景發展創新研判報告
- 2024年昆明市公安局招聘勤務輔警真題
- 客房部內部管理制度
- 小學生數學學習習慣的培養講座
- DeepSeek+AI大模型賦能制造業智能化供應鏈解決方案
- 2025河南省豫地科技集團有限公司社會招聘169人筆試參考題庫附帶答案詳解析集合
- T/CCOA 45-2023氣膜鋼筋混凝土球形倉儲糧技術規程
- 《船舶行業重大生產安全事故隱患判定標準》解讀與培訓
- 2025年中考生物模擬考試卷(附答案)
- 11《大家排好隊》(教學設計)2023-2024學年統編版道德與法治二年級上冊
評論
0/150
提交評論