清遠市重點中學2024年中考四模數學試題含解析_第1頁
清遠市重點中學2024年中考四模數學試題含解析_第2頁
清遠市重點中學2024年中考四模數學試題含解析_第3頁
清遠市重點中學2024年中考四模數學試題含解析_第4頁
清遠市重點中學2024年中考四模數學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

清遠市重點中學2024年中考四模數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.小明要去超市買甲、乙兩種糖果,然后混合成5千克混合糖果,已知甲種糖果的單價為a元/千克,乙種糖果的單價為b元/千克,且a>b.根據需要小明列出以下三種混合方案:(單位:千克)甲種糖果乙種糖果混合糖果方案1235方案2325方案32.52.55則最省錢的方案為()A.方案1 B.方案2C.方案3 D.三個方案費用相同2.已知:如圖,點P是正方形ABCD的對角線AC上的一個動點(A、C除外),作PE⊥AB于點E,作PF⊥BC于點F,設正方形ABCD的邊長為x,矩形PEBF的周長為y,在下列圖象中,大致表示y與x之間的函數關系的是()A. B. C. D.3.如圖,已知∠AOB=70°,OC平分∠AOB,DC∥OB,則∠C為()A.20° B.35° C.45° D.70°4.cos30°的值為(

)A.1

B.

C.

D.5.如圖是測量一物體體積的過程:步驟一:將180mL的水裝進一個容量為300mL的杯子中;步驟二:將三個相同的玻璃球放入水中,結果水沒有滿;步驟三:再將一個同樣的玻璃球放入水中,結果水滿溢出.根據以上過程,推測一個玻璃球的體積在下列哪一范圍內?(1mL=1cm3)().A.10cm3以上,20cm3以下 B.20cm3以上,30cm3以下C.30cm3以上,40cm3以下 D.40cm3以上,50cm3以下6.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B.C. D.7.如圖,△ABC內接于⊙O,BC為直徑,AB=8,AC=6,D是弧AB的中點,CD與AB的交點為E,則CE:DE等于()A.3:1 B.4:1 C.5:2 D.7:28.如圖,平面直角坐標系xOy中,四邊形OABC的邊OA在x軸正半軸上,BC∥x軸,∠OAB=90°,點C(3,2),連接OC.以OC為對稱軸將OA翻折到OA′,反比例函數y=的圖象恰好經過點A′、B,則k的值是()A.9 B. C. D.39.如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點P是△ABC邊上一動點,沿B→A→C的路徑移動,過點P作PD⊥BC于點D,設BD=x,△BDP的面積為y,則下列能大致反映y與x函數關系的圖象是()A.B.C.D.10.正比例函數y=2kx的圖象如圖所示,則y=(k-2)x+1-k的圖象大致是()A.B.C.D.二、填空題(共7小題,每小題3分,滿分21分)11.在Rt△ABC中,∠C=90°,sinA=,那么cosA=________.12.用一直徑為10cm的玻璃球和一個圓錐形的牛皮紙紙帽可以制成一個不倒翁玩具,不倒翁的軸剖面圖如圖所示,圓錐的母線AB與⊙O相切于點B,不倒翁的頂點A到桌面L的最大距離是18cm.若將圓錐形紙帽的表面全涂上顏色,則需要涂色部分的面積約為cm2(精確到1cm2).13.小明和小亮分別從A、B兩地同時相向而行,并以各自的速度勻速行駛,途中會經過奶茶店C,小明先到達奶茶店C,并在C地休息了一小時,然后按原速度前往B地,小亮從B地直達A地,結果還是小明先到達目的地,如圖是小明和小亮兩人之間的距離y(千米)與小亮出發時間x(時)的函數的圖象,請問當小明到達B地時,小亮距離A地_____千米.14.用換元法解方程,設y=,那么原方程化為關于y的整式方程是_____.15.當﹣4≤x≤2時,函數y=﹣(x+3)2+2的取值范圍為_____________.16.比較大?。篲____.(填“<“,“=“,“>“)17.如圖△ABC中,∠C=90°,AC=8cm,AB的垂直平分線MN交AC于D,連接BD,若cos∠BDC=,則BC的長為_____.三、解答題(共7小題,滿分69分)18.(10分)某公司對用戶滿意度進行問卷調查,將連續6天內每天收回的問卷數進行統計,繪制成如圖所示的統計圖.已知從左到右各矩形的高度比為2:3:4:6:4:1.第3天的頻數是2.請你回答:(1)收回問卷最多的一天共收到問卷_________份;(2)本次活動共收回問卷共_________份;(3)市場部對收回的問卷統一進行了編號,通過電腦程序隨機抽選一個編號,抽到問卷是第4天收回的概率是多少?(4)按照(3)中的模式隨機抽選若干編號,確定幸運用戶發放紀念獎,第4天和第6天分別有10份和2份獲獎,那么你認為這兩組中哪個組獲獎率較高?為什么?19.(5分)如圖,AB是⊙O的直徑,點E是上的一點,∠DBC=∠BED.求證:BC是⊙O的切線;已知AD=3,CD=2,求BC的長.20.(8分)綜合與實踐﹣﹣旋轉中的數學問題背景:在一次綜合實踐活動課上,同學們以兩個矩形為對象,研究相似矩形旋轉中的問題:已知矩形ABCD∽矩形A′B′C′D′,它們各自對角線的交點重合于點O,連接AA′,CC′.請你幫他們解決下列問題:觀察發現:(1)如圖1,若A′B′∥AB,則AA′與CC′的數量關系是______;操作探究:(2)將圖1中的矩形ABCD保持不動,矩形A′B′C′D′繞點O逆時針旋轉角度α(0°<α≤90°),如圖2,在矩形A′B′C′D′旋轉的過程中,(1)中的結論還成立嗎?若成立,請證明;若不成立,請說明理由;操作計算:(3)如圖3,在(2)的條件下,當矩形A′B′C′D′繞點O旋轉至AA′⊥A′D′時,若AB=6,BC=8,A′B′=3,求AA′的長.21.(10分)先化簡再求值:(a﹣)÷,其中a=1+,b=1﹣.22.(10分)如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點D′未到達點B時,A′C′交CD于E,D′C′交CB于點F,連接EF,當四邊形EDD′F為菱形時,試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請說明理由.23.(12分)試探究:小張在數學實踐活動中,畫了一個△ABC,∠ACB=90°,BC=1,AC=2,再以點B為圓心,BC為半徑畫弧交AB于點D,然后以A為圓心,AD長為半徑畫弧交AC于點E,如圖1,則AE=;此時小張發現AE2=AC?EC,請同學們驗證小張的發現是否正確.拓展延伸:小張利用圖1中的線段AC及點E,構造AE=EF=FC,連接AF,得到圖2,試完成以下問題:(1)求證:△ACF∽△FCE;(2)求∠A的度數;(3)求cos∠A的值;應用遷移:利用上面的結論,求半徑為2的圓內接正十邊形的邊長.24.(14分)某市旅游景區有A,B,C,D,E等著名景點,該市旅游部門統計繪制出2018年春節期間旅游情況統計圖(如圖),根據圖中信息解答下列問題:(1)2018年春節期間,該市A,B,C,D,E這五個景點共接待游客萬人,扇形統計圖中E景點所對應的圓心角的度數是,并補全條形統計圖.(2)甲,乙兩個旅行團在A,B,D三個景點中隨機選擇一個,這兩個旅行團選中同一景點的概率是.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

求出三種方案混合糖果的單價,比較后即可得出結論.【詳解】方案1混合糖果的單價為,方案2混合糖果的單價為,方案3混合糖果的單價為.∵a>b,∴,∴方案1最省錢.故選:A.【點睛】本題考查了加權平均數,求出各方案混合糖果的單價是解題的關鍵.2、A【解析】由題意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周長等于2個正方形的邊長.則y=2x,為正比例函數.故選A.3、B【解析】解:∵OC平分∠AOB,∴∠AOC=∠BOC=∠AOB=35°,∵CD∥OB,∴∠BOC=∠C=35°,故選B.4、D【解析】cos30°=.故選D.5、C【解析】分析:本題可設玻璃球的體積為x,再根據題意列出不等式組求得解集得出答案即可.詳解:設玻璃球的體積為x,則有解得30<x<1.故一顆玻璃球的體積在30cm3以上,1cm3以下.故選C.點睛:此題考查一元一次不等式組的運用,解此類題目常常要根據題意列出不等式組,再化簡計算得出x的取值范圍.6、D【解析】

根據中心對稱圖形的定義旋轉180°后能夠與原圖形完全重合即是中心對稱圖形,以及軸對稱圖形的定義即可判斷出.【詳解】解:A.∵此圖形旋轉180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;B.∵此圖形旋轉180°后能與原圖形重合,∴此圖形是中心對稱圖形,不是軸對稱圖形,故此選項錯誤;C.∵此圖形旋轉180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;D.∵此圖形旋轉180°后能與原圖形重合,∴此圖形是中心對稱圖形,也是軸對稱圖形,故此選項正確.故選:D.【點睛】本題考查了中心對稱圖形與軸對稱圖形的定義,解題的關鍵是熟練的掌握中心對稱圖形與軸對稱圖形的定義.7、A【解析】

利用垂徑定理的推論得出DO⊥AB,AF=BF,進而得出DF的長和△DEF∽△CEA,再利用相似三角形的性質求出即可.【詳解】連接DO,交AB于點F,∵D是的中點,∴DO⊥AB,AF=BF,∵AB=8,∴AF=BF=4,∴FO是△ABC的中位線,AC∥DO,∵BC為直徑,AB=8,AC=6,∴BC=10,FO=AC=1,∴DO=5,∴DF=5-1=2,∵AC∥DO,∴△DEF∽△CEA,∴,∴==1.故選:A.【點睛】此題主要考查了垂徑定理的推論以及相似三角形的判定與性質,根據已知得出△DEF∽△CEA是解題關鍵.8、C【解析】

設B(,2),由翻折知OC垂直平分AA′,A′G=2EF,AG=2AF,由勾股定理得OC=,根據相似三角形或銳角三角函數可求得A′(,),根據反比例函數性質k=xy建立方程求k.【詳解】如圖,過點C作CD⊥x軸于D,過點A′作A′G⊥x軸于G,連接AA′交射線OC于E,過E作EF⊥x軸于F,設B(,2),在Rt△OCD中,OD=3,CD=2,∠ODC=90°,∴OC==,由翻折得,AA′⊥OC,A′E=AE,∴sin∠COD=,∴AE=,∵∠OAE+∠AOE=90°,∠OCD+∠AOE=90°,∴∠OAE=∠OCD,∴sin∠OAE==sin∠OCD,∴EF=,∵cos∠OAE==cos∠OCD,∴,∵EF⊥x軸,A′G⊥x軸,∴EF∥A′G,∴,∴,,∴,∴A′(,),∴,∵k≠0,∴,故選C.【點睛】本題是反比例函數綜合題,常作為考試題中選擇題壓軸題,考查了反比例函數點的坐標特征、相似三角形、翻折等,解題關鍵是通過設點B的坐標,表示出點A′的坐標.9、B【解析】解:過A點作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=12BC=2,當0≤x≤2時,如圖1,∵∠B=45°,∴PD=BD=x,∴y=12?x?x=當2<x≤4時,如圖2,∵∠C=45°,∴PD=CD=4﹣x,∴y=12?(4﹣x)?x=-10、B【解析】試題解析:由圖象可知,正比函數y=2kx的圖象經過二、四象限,∴2k<0,得k<0,∴k?2<0,1?k>0,∴函數y=(k?2)x+1?k圖象經過一、二、四象限,故選B.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】∵Rt△ABC中,∠C=90°,∴sinA=,∵sinA=,∴c=2a,∴b=,∴cosA=,故答案為.12、174cm1.【解析】直徑為10cm的玻璃球,玻璃球半徑OB=5,所以AO=18?5=13,由勾股定理得,AB=11,∵BD×AO=AB×BO,BD=,圓錐底面半徑=BD=,圓錐底面周長=1×π,側面面積=×1×π×11=.點睛:利用勾股定理可求得圓錐的母線長,進而過B作出垂線,得到圓錐的底面半徑,那么圓錐的側面積=底面周長×母線長÷1.本題是一道綜合題,考查的知識點較多,利用了勾股定理,圓的周長公式、圓的面積公式和扇形的面積公式求解.把實際問題轉化為數學問題求解是本題的解題關鍵.13、1【解析】

根據題意設小明的速度為akm/h,小亮的速度為bkm/h,求出a,b的值,再代入方程即可解答.【詳解】設小明的速度為akm/h,小亮的速度為bkm/h,,解得,,當小明到達B地時,小亮距離A地的距離是:120×(3.5﹣1)﹣60×3.5=1(千米),故答案為1.【點睛】此題考查一次函數的應用,解題關鍵在于列出方程組.14、6y2-5y+2=0【解析】

根據y=,將方程變形即可.【詳解】根據題意得:3y+,得到6y2-5y+2=0故答案為6y2-5y+2=0【點睛】此題考查了換元法解分式方程,利用了整體的思想,將方程進行適當的變形是解本題的關鍵.15、-23≤y≤2【解析】

先根據a=-1判斷出拋物線的開口向下,故有最大值,可知對稱軸x=-3,再根據-4≤x≤2,可知當x=-3時y最大,把x=2時y最小代入即可得出結論.【詳解】解:∵a=-1,

∴拋物線的開口向下,故有最大值,

∵對稱軸x=-3,

∴當x=-3時y最大為2,

當x=2時y最小為-23,

∴函數y的取值范圍為-23≤y≤2,故答案為:-23≤y≤2.【點睛】本題考查二次函數的性質,掌握拋物線的開口方向、對稱軸以及增減性是解題關鍵.16、<【解析】

先比較它們的平方,進而可比較與的大小.【詳解】()2=80,()2=100,∵80<100,∴<.故答案為:<.【點睛】本題考查了實數的大小比較,帶二次根號的實數,在比較它們的大小時,通常先比較它們的平方的大小.17、4【解析】試題解析:∵可∴設DC=3x,BD=5x,又∵MN是線段AB的垂直平分線,∴AD=DB=5x,又∵AC=8cm,∴3x+5x=8,解得,x=1,在Rt△BDC中,CD=3cm,DB=5cm,故答案為:4cm.三、解答題(共7小題,滿分69分)18、1860分【解析】分析:(1)觀察圖形可知,第4天收到問卷最多,用矩形的高度比=頻數之比即可得出結論;(2)由于組距相同,各矩形的高度比即為頻數的比,可由數據總數=某組的頻數÷頻率計算;(3)根據概率公式計算即可;(4)分別計算第4天,第6天的獲獎率后比較即可.詳解:(1)由圖可知:第4天收到問卷最多,設份數為x,則:4:6=2:x,解得:x=18;(2)2÷[4÷(2+3+4+6+4+1)]=60份;(3)抽到第4天回收問卷的概率是;(4)第4天收回問卷獲獎率,第6天收回問卷獲獎率.∵,∴第6天收回問卷獲獎率高.點睛:本題考查了對頻數分布直方圖的掌握情況,根據圖中信息,求出頻率,用來估計概率.用到的知識點為:總體數目=部分數目÷相應頻率.部分的具體數目=總體數目×相應頻率.概率=所求情況數與總情況數之比.19、(1)證明見解析(2)BC=【解析】

(1)AB是⊙O的直徑,得∠ADB=90°,從而得出∠BAD=∠DBC,即∠ABC=90°,即可證明BC是⊙O的切線;(2)可證明△ABC∽△BDC,則,即可得出BC=.【詳解】(1)∵AB是⊙O的切直徑,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切線;(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴,即BC2=AC?CD=(AD+CD)?CD=10,∴BC=.考點:1.切線的判定;2.相似三角形的判定和性質.20、(1)AA′=CC′;(2)成立,證明見解析;(3)AA′=【解析】

(1)連接AC、A′C′,根據題意得到點A、A′、C′、C在同一條直線上,根據矩形的性質得到OA=OC,OA′=OC′,得到答案;(2)連接AC、A′C′,證明△A′OA≌△C′OC,根據全等三角形的性質證明;(3)連接AC,過C作CE⊥AB′,交AB′的延長線于E,根據相似多邊形的性質求出B′C′,根據勾股定理計算即可.【詳解】(1)AA′=CC′,理由如下:連接AC、A′C′,∵矩形ABCD∽矩形A′B′C′D′,∠CAB=∠C′A′B′,∵A′B′∥AB,∴點A、A′、C′、C在同一條直線上,由矩形的性質可知,OA=OC,OA′=OC′,∴AA′=CC′,故答案為AA′=CC′;(2)(1)中的結論還成立,AA′=CC′,理由如下:連接AC、A′C′,則AC、A′C′都經過點O,由旋轉的性質可知,∠A′OA=∠C′OC,∵四邊形ABCD和四邊形A′B′C′D′都是矩形,∴OA=OC,OA′=OC′,在△A′OA和△C′OC中,,∴△A′OA≌△C′OC,∴AA′=CC′;(3)連接AC,過C作CE⊥AB′,交AB′的延長線于E,∵矩形ABCD∽矩形A′B′C′D′,∴,即,解得,B′C′=4,∵∠EB′C=∠B′C′C=∠E=90°,∴四邊形B′ECC′為矩形,∴EC=B′C′=4,在Rt△ABC中,AC==10,在Rt△AEC中,AE==2,∴AA′+B′E=2﹣3,又AA′=CC′=B′E,∴AA′=.【點睛】本題考查的是矩形的性質、旋轉變換的性質、全等三角形的判定和性質,掌握旋轉變換的性質、矩形的性質是解題的關鍵.21、原式=【解析】

括號內先通分進行分式的加減運算,然后再進行分式的乘除法運算,最后將數個代入進行計算即可.【詳解】原式===,當a=1+,b=1﹣時,原式==.【點睛】本題考查了分式的化簡求值,熟練掌握分式混合運算的運算順序以及運算法則是解題的關鍵.22、△A′DE是等腰三角形;證明過程見解析.【解析】試題分析:當四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.先證明CD=DA=DB,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判斷△DA′E的形狀.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根據A′D=DE=EF即可證明.試題解析:當四邊形EDD′F為菱形時,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四邊形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠CEF=∠DA′E,∠EFC=∠CD′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C=∠EFC,在△A′DE和△EFC′中,∠EA∴△A′DE≌△EFC′.考點:1.菱形的性質;2.全等三角形的判定;3.平移的性質.23、(1)小張的發現正確;(2)詳見解析;(3)∠A=36°;(4)【解析】

嘗試探究:根據勾股定理計算即可;拓展延伸:(1)由AE2=AC?EC,推出,又AE=FC,推出,即可解問題;(2)利用相似三角形的性質即可解決問題;(3)如圖,過點F作FM⊥AC交AC于點M,根據cos∠A=,求出AM、AF即可;應用遷移:利用(3)中結論即可解決問題;【詳解】解:嘗試探究:﹣1;∵∠ACB=90°,BC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論