茂名市重點中學2023-2024學年中考適應性考試數學試題含解析_第1頁
茂名市重點中學2023-2024學年中考適應性考試數學試題含解析_第2頁
茂名市重點中學2023-2024學年中考適應性考試數學試題含解析_第3頁
茂名市重點中學2023-2024學年中考適應性考試數學試題含解析_第4頁
茂名市重點中學2023-2024學年中考適應性考試數學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

茂名市重點中學2023-2024學年中考適應性考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.正五邊形繞著它的中心旋轉后與它本身重合,最小的旋轉角度數是()A.36° B.54° C.72° D.108°2.下列圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.3.長度單位1納米=10A.25.1×10-6米B.C.2.51×105米D.4.如果關于x的分式方程有負分數解,且關于x的不等式組的解集為x<-2,那么符合條件的所有整數a的積是()A.-3 B.0 C.3 D.95.如圖,中,,且,設直線截此三角形所得陰影部分的面積為S,則S與t之間的函數關系的圖象為下列選項中的A. B. C. D.6.如圖所示,有一條線段是()的中線,該線段是().A.線段GH B.線段AD C.線段AE D.線段AF7.已知二次函數y=x2﹣4x+m的圖象與x軸交于A、B兩點,且點A的坐標為(1,0),則線段AB的長為()A.1 B.2 C.3 D.48.如圖,兩個反比例函數y1=(其中k1>0)和y2=在第一象限內的圖象依次是C1和C2,點P在C1上.矩形PCOD交C2于A、B兩點,OA的延長線交C1于點E,EF⊥x軸于F點,且圖中四邊形BOAP的面積為6,則EF:AC為()A.:1 B.2: C.2:1 D.29:149.tan45o的值為()A. B.1 C. D.10.隨著“三農”問題的解決,某農民近兩年的年收入發生了明顯變化,已知前年和去年的收入分別是60000元和80000元,下面是依據①②③三種農作物每種作物每年的收入占該年年收入的比例繪制的扇形統計圖.依據統計圖得出的以下四個結論正確的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入為2.8萬D.前年年收入不止①②③三種農作物的收入二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知AB∥CD,直線EF分別交AB、CD于點E、F,EG平分∠BEF,若∠1=50°,則∠2的度數為_______.12.如圖,直角△ABC中,AC=3,BC=4,AB=5,則內部五個小直角三角形的周長為_____.13.在一個不透明的袋子里裝有除顏色外其它均相同的紅、藍小球各一個,每次從袋中摸出一個小球記下顏色后再放回,摸球三次,“僅有一次摸到紅球”的概率是_____.14.已知一組數據1,2,0,﹣1,x,1的平均數是1,則這組數據的中位數為_____.15.如果點A(-1,4)、B(m,4)在拋物線y=a(x-1)2+h上,那么m的值為_____.16.一組數據7,9,8,7,9,9,8的中位數是__________17.如圖,直線l經過⊙O的圓心O,與⊙O交于A、B兩點,點C在⊙O上,∠AOC=30°,點P是直線l上的一個動點(與圓心O不重合),直線CP與⊙O相交于點Q,且PQ=OQ,則滿足條件的∠OCP的大小為_______.三、解答題(共7小題,滿分69分)18.(10分)已知△ABC中,AD是∠BAC的平分線,且AD=AB,過點C作AD的垂線,交AD的延長線于點H.(1)如圖1,若∠BAC=60°.①直接寫出∠B和∠ACB的度數;②若AB=2,求AC和AH的長;(2)如圖2,用等式表示線段AH與AB+AC之間的數量關系,并證明.19.(5分)如圖,AB是⊙O的直徑,AC是⊙O的切線,BC與⊙O相交于點D,點E在⊙O上,且DE=DA,AE與BC交于點F.(1)求證:FD=CD;(2)若AE=8,tan∠E=3420.(8分)學校為了提高學生跳遠科目的成績,對全校500名九年級學生開展了為期一個月的跳遠科目強化訓練。王老師為了了解學生的訓練情況,強化訓練前,隨機抽取了該年級部分學生進行跳遠測試,經過一個月的強化訓練后,再次測得這部分學生的跳遠成績,將兩次測得的成績制作成圖所示的統計圖和不完整的統計表(滿分10分,得分均為整數).根據以上信息回答下列問題:訓練后學生成績統計表中n,并補充完成下表:若跳遠成績9分及以上為優秀,估計該校九年級學生訓練后比訓練前達到優秀的人數增加了多少?經調查,經過訓練后得到9分的五名同學中,有三名男生和兩名女生,王老師要從這五名同學中隨機抽取兩名同學寫出訓練報告,請用列表或畫樹狀圖的方法,求所抽取的兩名同學恰好是一男一女的概率.21.(10分)解不等式組,請結合題意填空,完成本題的解答.(1)解不等式①,得_____;(2)解不等式②,得_____;(3)把不等式①和②的解集在數軸上表示出來;(4)原不等式組的解集為_____.22.(10分)已知函數的圖象與函數的圖象交于點.(1)若,求的值和點P的坐標;(2)當時,結合函數圖象,直接寫出實數的取值范圍.23.(12分)解不等式組:并求它的整數解的和.24.(14分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.(1)求證:四邊形ACDF是平行四邊形;(2)當CF平分∠BCD時,寫出BC與CD的數量關系,并說明理由.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】正五邊形繞著它的中心旋轉后與它本身重合,最小的旋轉角度數是=72度,故選C.2、B【解析】

根據軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】解:A、是軸對稱圖形,也是中心對稱圖形,故錯誤;B、是中心對稱圖形,不是軸對稱圖形,故正確;C、是軸對稱圖形,也是中心對稱圖形,故錯誤;D、是軸對稱圖形,也是中心對稱圖形,故錯誤.故選B.【點睛】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.3、D【解析】先將25100用科學記數法表示為2.51×104,再和10-9相乘,等于2.51×10-5米.故選D4、D【解析】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式組的解集為x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即,符合題意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合題意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即,符合題意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合題意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即,符合題意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合題意;把a=3代入整式方程得:﹣3x=1﹣x,即,符合題意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合題意,∴符合條件的整數a取值為﹣3;﹣1;1;3,之積為1.故選D.5、D【解析】

Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行線的性質得出∠OCD=∠A,即∠AOD=∠OCD=45°,進而證明OD=CD=t;最后根據三角形的面積公式,解答出S與t之間的函數關系式,由函數解析式來選擇圖象.【詳解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S與t之間的函數關系的圖象應為定義域為[0,3],開口向上的二次函數圖象;故選D.【點睛】本題主要考查的是二次函數解析式的求法及二次函數的圖象特征,解答本題的關鍵是根據三角形的面積公式,解答出S與t之間的函數關系式,由函數解析式來選擇圖象.6、B【解析】

根據三角形一邊的中點與此邊所對頂點的連線叫做三角形的中線逐一判斷即可得.【詳解】根據三角形中線的定義知:線段AD是△ABC的中線.故選B.【點睛】本題考查了三角形的中線,解題的關鍵是掌握三角形一邊的中點與此邊所對頂點的連線叫做三角形的中線.7、B【解析】

先將點A(1,0)代入y=x2﹣4x+m,求出m的值,將點A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1?x2=3,即可解答【詳解】將點A(1,0)代入y=x2﹣4x+m,得到m=3,所以y=x2﹣4x+3,與x軸交于兩點,設A(x1,y1),b(x2,y2)∴x2﹣4x+3=0有兩個不等的實數根,∴x1+x2=4,x1?x2=3,∴AB=|x1﹣x2|==2;故選B.【點睛】此題考查拋物線與坐標軸的交點,解題關鍵在于將已知點代入.8、A【解析】試題分析:首先根據反比例函數y2=的解析式可得到=×3=,再由陰影部分面積為6可得到=9,從而得到圖象C1的函數關系式為y=,再算出△EOF的面積,可以得到△AOC與△EOF的面積比,然后證明△EOF∽△AOC,根據對應邊之比等于面積比的平方可得到EF﹕AC=.故選A.考點:反比例函數系數k的幾何意義9、B【解析】

解:根據特殊角的三角函數值可得tan45o=1,故選B.【點睛】本題考查特殊角的三角函數值.10、C【解析】

A、前年①的收入為60000×=19500,去年①的收入為80000×=26000,此選項錯誤;B、前年③的收入所占比例為×100%=30%,去年③的收入所占比例為×100%=32.5%,此選項錯誤;C、去年②的收入為80000×=28000=2.8(萬元),此選項正確;D、前年年收入即為①②③三種農作物的收入,此選項錯誤,故選C.【點睛】本題主要考查扇形統計圖,解題的關鍵是掌握扇形統計圖是用整個圓表示總數用圓內各個扇形的大小表示各部分數量占總數的百分數,并且通過扇形統計圖可以很清楚地表示出各部分數量同總數之間的關系.二、填空題(共7小題,每小題3分,滿分21分)11、65°【解析】因為AB∥CD,所以∠BEF=180°-∠1=130°,因為EG平分∠BEF,所以∠BEG=65°,因為AB∥CD,所以∠2=∠BEG=65°.12、1【解析】分析:由圖形可知,內部小三角形直角邊是大三角形直角邊平移得到的,故內部五個小直角三角形的周長為大直角三角形的周長.詳解:由圖形可以看出:內部小三角形直角邊是大三角形直角邊平移得到的,故內部五個小直角三角形的周長為AC+BC+AB=1.故答案為1.點睛:本題主要考查了平移的性質,需要注意的是:平移前后圖形的大小、形狀都不改變.13、【解析】摸三次有可能有:紅紅紅、紅紅藍、紅藍紅、紅藍藍、藍紅紅、藍紅藍、藍藍紅、藍藍藍共計8種可能,其中僅有一個紅壞的有:紅藍藍、藍紅藍、藍藍紅共計3種,所以“僅有一次摸到紅球”的概率是.故答案是:.14、2【解析】

解:這組數據的平均數為2,

有(2+2+0-2+x+2)=2,

可求得x=2.

將這組數據從小到大重新排列后,觀察數據可知最中間的兩個數是2與2,

其平均數即中位數是(2+2)÷2=2.

故答案是:2.15、1【解析】

根據函數值相等兩點關于對稱軸對稱,可得答案.【詳解】由點A(﹣1,4)、B(m,4)在拋物線y=a(x﹣1)2+h上,得:(﹣1,4)與(m,4)關于對稱軸x=1對稱,m﹣1=1﹣(﹣1),解得:m=1.故答案為:1.【點睛】本題考查了二次函數圖象上點的坐標特征,利用函數值相等兩點關于對稱軸對稱得出m﹣1=1﹣(﹣1)是解題的關鍵.16、1【解析】

將一組數據按照從小到大(或從大到?。┑捻樞蚺帕校绻麛祿膫€數是奇數,則處于中間位置的數就是這組數據的中位數.如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數,據此可得.【詳解】解:將數據重新排列為7、7、1、1、9、9、9,所以這組數據的中位數為1,故答案為1.【點睛】本題主要考查中位數,解題的關鍵是掌握中位數的定義.17、40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°三、解答題(共7小題,滿分69分)18、(1)①45°,②;(2)線段AH與AB+AC之間的數量關系:2AH=AB+AC.證明見解析.【解析】

(1)①先根據角平分線的定義可得∠BAD=∠CAD=30°,由等腰三角形的性質得∠B=75°,最后利用三角形內角和可得∠ACB=45°;②如圖1,作高線DE,在Rt△ADE中,由∠DAC=30°,AB=AD=2可得DE=1,AE=,在Rt△CDE中,由∠ACD=45°,DE=1,可得EC=1,AC=+1,同理可得AH的長;(2)如圖2,延長AB和CH交于點F,取BF的中點G,連接GH,易證△ACH≌△AFH,則AC=AF,HC=HF,根據平行線的性質和等腰三角形的性質可得AG=AH,再由線段的和可得結論.【詳解】(1)①∵AD平分∠BAC,∠BAC=60°,∴∠BAD=∠CAD=30°,∵AB=AD,∴∠B==75°,∴∠ACB=180°﹣60°﹣75°=45°;②如圖1,過D作DE⊥AC交AC于點E,在Rt△ADE中,∵∠DAC=30°,AB=AD=2,∴DE=1,AE=,在Rt△CDE中,∵∠ACD=45°,DE=1,∴EC=1,∴AC=+1,在Rt△ACH中,∵∠DAC=30°,∴CH=AC=∴AH==;(2)線段AH與AB+AC之間的數量關系:2AH=AB+AC.證明:如圖2,延長AB和CH交于點F,取BF的中點G,連接GH.易證△ACH≌△AFH,∴AC=AF,HC=HF,∴GH∥BC,∵AB=AD,∴∠ABD=∠ADB,∴∠AGH=∠AHG,∴AG=AH,∴AB+AC=AB+AF=2AB+BF=2(AB+BG)=2AG=2AH.【點睛】本題是三角形的綜合題,難度適中,考查了三角形全等的性質和判定、等腰三角形的性質和判定、勾股定理、三角形的中位線定理等知識,熟練掌握這些性質是本題的關鍵,第(2)問構建等腰三角形是關鍵.19、(1)證明見解析;(2)256【解析】

(1)先利用切線的性質得出∠CAD+∠BAD=90°,再利用直徑所對的圓周角是直角得出∠B+∠BAD=90°,從而可證明∠B=∠EAD,進而得出∠EAD=∠CAD,進而判斷出△ADF≌△ADC,即可得出結論;(2)過點D作DG⊥AE,垂足為G.依據等腰三角形的性質可得到EG=AG=1,然后在Rt△GEG中,依據銳角三角函數的定義可得到DG的長,然后依據勾股定理可得到AD=ED=2,然后在Rt△ABD中,依據銳角三角函數的定義可求得AB的長,從而可求得⊙O的半徑的長.【詳解】(1)∵AC是⊙O的切線,∴BA⊥AC,∴∠CAD+∠BAD=90°,∵AB是⊙O的直徑,∴∠ADB=90°,∴∠B+∠BAD=90°,∴∠CAD=∠B,∵DA=DE,∴∠EAD=∠E,又∵∠B=∠E,∴∠B=∠EAD,∴∠EAD=∠CAD,在△ADF和△ADC中,∠ADF=∠ADC=90°,AD=AD,∠FAD=∠CAD,∴△ADF≌△ADC,∴FD=CD.(2)如下圖所示:過點D作DG⊥AE,垂足為G.∵DE=AE,DG⊥AE,∴EG=AG=12∵tan∠E=34∴GDEG=34,即GD4∴ED=EG∵∠B=∠E,tan∠E=34∴sin∠B=ADAB=GDED=∴⊙O的半徑為256【點睛】本題考查了切線的性質,圓周角定理,圓的性質,全等三角形的判定和性質,利用等式的性質和同角的余角相等判斷角相等是解本題的關鍵.20、(1)n=3,見解析;(2)125人;(3)P=【解析】

(1)利用強化訓練前后人數不變計算n的值;利用中位數對應計算強化訓練前的中位數;利用平均數的計算方法計算強化訓練后的平均分;利用眾數的定義確定強化訓練后的眾數;(2)用500分別乘以樣本中訓練前后優秀的人數的百分比,然后求差即可;(3)畫樹狀圖展示所有20種等可能的結果數,再找出所抽取的兩名同學恰好是一男一女的結果數,然后根據概率公式求解.【詳解】(1)解:(1)n=20-1-3-8-5=3;強化訓練前的中位數7+82強化訓練后的平均分為120強化訓練后的眾數為8,故答案為3;7.5;8.3;8;(2)500×5+3(3)(3)畫樹狀圖為:共有20種等可能的結果數,其中所抽取的兩名同學恰好是一男一女的結果數為12,所以所抽取的兩名同學恰好是一男一女的概率P=1220【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數目m,然后根據概率公式計算事件A或事件B的概率.也考查了統計圖.21、(1)x>1;(1)x≤1;(3)答案見解析;(4)1<x≤1.【解析】

根據一元一次不等式的解法分別解出兩個不等式,根據不等式的解集的確定方法得到不等式組的解集.【詳解】解:(1)解不等式①,得x>1;(1)解不等式②,得x≤1;(3)把不等式①和②的解集在數軸上表示出來:(4)原不等式組的解集為:1<x≤1.【點睛】本題考查了一元一次不等式組的解法,掌握確定解集的規律:同大取大;同小取?。淮笮⌒〈笾虚g找;大大小小找不到是解題的關鍵.22、(1),,或;(2).【解析】【分析】(1)將P(m,n)代入y=kx,再結合m=2n即可求得k的值,聯立y=與y=kx組成方程組,解方程組即可求得點P的坐標;(2)畫出兩個函數的圖象,觀察函數的圖象即可得.【詳解】(1)∵函數的圖象交于點,∴n=mk,∵m=2n,∴n=2nk,∴k=,∴直線解析式為:y=x,解方程組,得,,∴交點P的坐標為:(,)或(-,-);(2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論