




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆新疆昌吉市第九中學高三下學期第五次調研考試數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示程序框圖,若判斷框內為“”,則輸出()A.2 B.10 C.34 D.982.若,則“”是“的展開式中項的系數為90”的()A.必要不充分條件 B.充分不必要條件 C.充要條件 D.既不充分也不必要條件3.已知函數,則在上不單調的一個充分不必要條件可以是()A. B. C.或 D.4.設函數恰有兩個極值點,則實數的取值范圍是()A. B.C. D.5.已知實數滿足約束條件,則的最小值是A. B. C.1 D.46.若為過橢圓中心的弦,為橢圓的焦點,則△面積的最大值為()A.20 B.30 C.50 D.607.設集合,,則().A. B.C. D.8.定義在R上的函數滿足,為的導函數,已知的圖象如圖所示,若兩個正數滿足,的取值范圍是()A. B. C. D.9.等差數列中,已知,且,則數列的前項和中最小的是()A.或 B. C. D.10.設為的兩個零點,且的最小值為1,則()A. B. C. D.11.若函數在時取得極值,則()A. B. C. D.12.已知等比數列滿足,,等差數列中,為數列的前項和,則()A.36 B.72 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是定義在上的奇函數,當時,,則不等式的解集用區間表示為__________.14.若函數,其中且,則______________.15.設雙曲線的左焦點為,過點且傾斜角為45°的直線與雙曲線的兩條漸近線順次交于,兩點若,則的離心率為________.16.已知三棱錐中,,,,且二面角的大小為,則三棱錐外接球的表面積為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知(1)若,且函數在區間上單調遞增,求實數a的范圍;(2)若函數有兩個極值點,且存在滿足,令函數,試判斷零點的個數并證明.18.(12分)已知函數.(1)證明:當時,;(2)若函數只有一個零點,求正實數的值.19.(12分)在最新公布的湖南新高考方案中,“”模式要求學生在語數外3門全國統考科目之外,在歷史和物理2門科目中必選且只選1門,再從化學、生物、地理、政治4門科目中任選2門,后三科的高考成績按新的規則轉換后計入高考總分.相應地,高校在招生時可對特定專業設置具體的選修科目要求.雙超中學高一年級有學生1200人,現從中隨機抽取40人進行選科情況調查,用數字1~6分別依次代表歷史、物理、化學、生物、地理、政治6科,得到如下的統計表:序號選科情況序號選科情況序號選科情況序號選科情況11341123621156312352235122342223532236323513145232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235182362823538134923519145292463923510236202353015640245(1)雙超中學規定:每個選修班最多編排50人且盡量滿額編班,每位老師執教2個選修班(當且僅當一門科目的選課班級總數為奇數時,允許這門科目的1位老師只教1個班).已知雙超中學高一年級現有化學、生物科目教師每科各8人,用樣本估計總體,則化學、生物兩科的教師人數是否需要調整?如果需要調整,各需增加或減少多少人?(2)請創建列聯表,運用獨立性檢驗的知識進行分析,探究是否有的把握判斷學生“選擇化學科目”與“選擇物理科目”有關.附:0.1000.0500.0100.0012.7063.8416.63510.828(3)某高校在其熱門人文專業的招生簡章中明確要求,僅允許選修了歷史科目,且在政治和地理2門中至少選修了1門的考生報名.現從雙超中學高一新生中隨機抽取3人,設具備高校專業報名資格的人數為,用樣本的頻率估計概率,求的分布列與期望.20.(12分)已知各項均不相等的等差數列的前項和為,且成等比數列.(1)求數列的通項公式;(2)求數列的前項和.21.(12分)如圖,在直三棱柱中,分別是中點,且,.求證:平面;求點到平面的距離.22.(10分)設點,動圓經過點且和直線相切.記動圓的圓心的軌跡為曲線.(1)求曲線的方程;(2)過點的直線與曲線交于、兩點,且直線與軸交于點,設,,求證:為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由題意,逐步分析循環中各變量的值的變化情況,即可得解.【詳解】由題意運行程序可得:,,,;,,,;,,,;不成立,此時輸出.故選:C.【點睛】本題考查了程序框圖,只需在理解程序框圖的前提下細心計算即可,屬于基礎題.2、B【解析】
求得的二項展開式的通項為,令時,可得項的系數為90,即,求得,即可得出結果.【詳解】若則二項展開式的通項為,令,即,則項的系數為,充分性成立;當的展開式中項的系數為90,則有,從而,必要性不成立.故選:B.【點睛】本題考查二項式定理、充分條件、必要條件及充要條件的判斷知識,考查考生的分析問題的能力和計算能力,難度較易.3、D【解析】
先求函數在上不單調的充要條件,即在上有解,即可得出結論.【詳解】,若在上不單調,令,則函數對稱軸方程為在區間上有零點(可以用二分法求得).當時,顯然不成立;當時,只需或,解得或.故選:D.【點睛】本題考查含參數的函數的單調性及充分不必要條件,要注意二次函數零點的求法,屬于中檔題.4、C【解析】
恰有兩個極值點,則恰有兩個不同的解,求出可確定是它的一個解,另一個解由方程確定,令通過導數判斷函數值域求出方程有一個不是1的解時t應滿足的條件.【詳解】由題意知函數的定義域為,.因為恰有兩個極值點,所以恰有兩個不同的解,顯然是它的一個解,另一個解由方程確定,且這個解不等于1.令,則,所以函數在上單調遞增,從而,且.所以,當且時,恰有兩個極值點,即實數的取值范圍是.故選:C【點睛】本題考查利用導數研究函數的單調性與極值,函數與方程的應用,屬于中檔題.5、B【解析】
作出該不等式組表示的平面區域,如下圖中陰影部分所示,設,則,易知當直線經過點時,z取得最小值,由,解得,所以,所以,故選B.6、D【解析】
先設A點的坐標為,根據對稱性可得,在表示出面積,由圖象遏制,當點A在橢圓的頂點時,此時面積最大,再結合橢圓的標準方程,即可求解.【詳解】由題意,設A點的坐標為,根據對稱性可得,則的面積為,當最大時,的面積最大,由圖象可知,當點A在橢圓的上下頂點時,此時的面積最大,又由,可得橢圓的上下頂點坐標為,所以的面積的最大值為.故選:D.【點睛】本題主要考查了橢圓的標準方程及簡單的幾何性質,以及三角形面積公式的應用,著重考查了數形結合思想,以及化歸與轉化思想的應用.7、D【解析】
根據題意,求出集合A,進而求出集合和,分析選項即可得到答案.【詳解】根據題意,則故選:D【點睛】此題考查集合的交并集運算,屬于簡單題目,8、C【解析】
先從函數單調性判斷的取值范圍,再通過題中所給的是正數這一條件和常用不等式方法來確定的取值范圍.【詳解】由的圖象知函數在區間單調遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C【點睛】本題考查了函數單調性和不等式的基礎知識,屬于中檔題.9、C【解析】
設公差為,則由題意可得,解得,可得.令
,可得
當時,,當時,,由此可得數列前項和中最小的.【詳解】解:等差數列中,已知,且,設公差為,
則,解得
,.
令
,可得,故當時,,當時,,
故數列前項和中最小的是.故選:C.【點睛】本題主要考查等差數列的性質,等差數列的通項公式的應用,屬于中檔題.10、A【解析】
先化簡已知得,再根據題意得出f(x)的最小值正周期T為1×2,再求出ω的值.【詳解】由題得,設x1,x2為f(x)=2sin(ωx﹣)(ω>0)的兩個零點,且的最小值為1,∴=1,解得T=2;∴=2,解得ω=π.故選A.【點睛】本題考查了三角恒等變換和三角函數的圖象與性質的應用問題,是基礎題.11、D【解析】
對函數求導,根據函數在時取得極值,得到,即可求出結果.【詳解】因為,所以,又函數在時取得極值,所以,解得.故選D【點睛】本題主要考查導數的應用,根據函數的極值求參數的問題,屬于常考題型.12、A【解析】
根據是與的等比中項,可求得,再利用等差數列求和公式即可得到.【詳解】等比數列滿足,,所以,又,所以,由等差數列的性質可得.故選:A【點睛】本題主要考查的是等比數列的性質,考查等差數列的求和公式,考查學生的計算能力,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設,則,由題意可得故當時,由不等式,可得,或求得,或故答案為(14、【解析】
先化簡函數的解析式,在求出,從而求得的值.【詳解】由題意,函數可化簡為,所以,所以.故答案為:0.【點睛】本題主要考查了二項式定理的應用,以及導數的運算和函數值的求解,其中解答中正確化簡函數的解析式,準確求解導數是解答的關鍵,著重考查了推理與運算能力.15、【解析】
設直線的方程為,與聯立得到A點坐標,由得,,代入可得,即得解.【詳解】由題意,直線的方程為,與聯立得,,由得,,從而,即,從而離心率.故答案為:【點睛】本題考查了雙曲線的離心率,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.16、【解析】
設的中心為T,AB的中點為N,AC中點為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點為球心O,將的長度求出或用球半徑表示,再利用余弦定理即可建立方程解得半徑.【詳解】設的中心為T,AB的中點為N,AC中點為M,分別過M,T做平面ABC,平面PAB的垂線,則垂線的交點為球心O,如圖所示因為,,所以,,,又二面角的大小為,則,,所以,設外接球半徑為R,則,,在中,由余弦定理,得,即,解得,故三棱錐外接球的表面積.故答案為:.【點睛】本題考查三棱錐外接球的表面積問題,解決此類問題一定要數形結合,建立關于球的半徑的方程,本題計算量較大,是一道難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)函數有兩個零點和【解析】試題分析:(1)求導后根據函數在區間單調遞增,導函數大于或等于0(2)先判斷為一個零點,然后再求導,根據,化簡求得另一個零點。解析:(1)當時,,因為函數在上單調遞增,所以當時,恒成立.[來源:Z&X&X&K]函數的對稱軸為.①,即時,,即,解之得,解集為空集;②,即時,即,解之得,所以③,即時,即,解之得,所以綜上所述,當函數在區間上單調遞增.(2)∵有兩個極值點,∴是方程的兩個根,且函數在區間和上單調遞增,在上單調遞減.∵∴函數也是在區間和上單調遞增,在上單調遞減∵,∴是函數的一個零點.由題意知:∵,∴,∴∴,∴又=∵是方程的兩個根,∴,,∴∵函數圖像連續,且在區間上單調遞增,在上單調遞減,在上單調遞增∴當時,,當時,當時,∴函數有兩個零點和.18、(1)證明見解析;(2).【解析】
(1)把轉化成,令,由題意得,即證明恒成立,通過導數求證即可(2)直接求導可得,,令,得或,故根據0與的大小關系來進行分類討論即可【詳解】證明:(1)令,則.分析知,函數的增區間為,減區間為.所以當時,.所以,即,所以.所以當時,.解:(2)因為,所以.討論:①當時,,此時函數在區間上單調遞減.又,故此時函數僅有一個零點為0;②當時,令,得,故函數的增區間為,減區間為,.又極大值,所以極小值.當時,有.又,此時,故當時,函數還有一個零點,不符合題意;③當時,令得,故函數的增區間為,減區間為,.又極小值,所以極大值.若,則,得,所以,所以當且時,,故此時函數還有一個零點,不符合題意.綜上,所求實數的值為.【點睛】本題考查不等式的恒成立問題和函數的零點問題,本題的難點在于把導數化成因式分解的形式,如,進而分類討論,本題屬于難題19、(1)不需調整(2)列聯表見解析;有的把握判斷學生“選擇化學科目”與“選擇物理科目”有關(3)詳見解析【解析】
(1)可估計高一年級選修相應科目的人數分別為120,2,推理得對應開設選修班的數目分別為15,1.推理知生物科目需要減少4名教師,化學科目不需要調整.(2)根據列聯表計算觀測值,根據臨界值表可得結論.(3)經統計,樣本中選修了歷史科目且在政治和地理2門中至少選修了一門的人數為12,頻率為.用頻率估計概率,則,根據二項分布概率公式可得分布列和數學期望.【詳解】(1)經統計可知,樣本40人中,選修化學、生物的人數分別為24,11,則可估計高一年級選修相應科目的人數分別為120,2.根據每個選修班最多編排50人,且盡量滿額編班,得對應開設選修班的數目分別為15,1.現有化學、生物科目教師每科各8人,根據每位教師執教2個選修班,當且僅當一門科目的選課班級總數為奇數時,允許這門科目的一位教師執教一個班的條件,知生物科目需要減少4名教師,化學科目不需要調整.(2)根據表格中的數據進行統計后,制作列聯表如下:選物理不選物理合計選化學19524不選化學61016合計251540則,有的把握判斷學生”選擇化學科目”與“選擇物理科目”有關.(3)經統計,樣本中選修了歷史科目且在政治和地理2門中至少選修了一門的人數為12,頻率為.用頻率估計概率,則,分布列如下:01230.3430.4410.1890.021數學期望為.【點睛】本題主要考查了離散型隨機變量的期望與方差,考查獨立性檢驗,意在考查學生對這些知識的理解掌握水平和分析推理能力.20、(1);(2).【解析】試題分析:(1)設公差為,列出關于的方程組,求解的值,即可得到數列的通項公式;(2)由(1)可得,即可利用裂項相消求解數列的和.試
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年農業生物技術在農業生物抗逆性基因挖掘中的應用:基因編輯與抗逆性突破報告
- 中考新方向 復習課件 譯林版(2025)英語八年級上冊
- 圍棋啟蒙班題目及答案
- 外語導游題目大全及答案
- 腹股溝斜疝治療方案講課件
- 上電院工程流體力學課件第1章 流體及其物理性質
- 大五人格在醫療改革政策執行中的作用研究
- 四川長江職業學院《樂理與視唱二》2023-2024學年第二學期期末試卷
- 鹽城幼兒師范高等專科學校《企業項目施工實踐》2023-2024學年第二學期期末試卷
- 山東電子職業技術學院《心理統計學(上)》2023-2024學年第二學期期末試卷
- 客服投訴處理技巧培訓
- 護理心理學試題及答案解讀
- 殯葬火化師試題及答案大全
- 2025年高考物理壓軸題專項訓練:動量定理及碰撞類動量守恒定律的應用(解析版)
- 2025年西藥藥劑員(中級)職業技能鑒定考試題庫(含答案)
- 5.2做自強不息的中國人(教學設計)2024-2025學年七年級道德與法治下冊(統編版2024)
- 《微信公眾號如何申請》課件
- 2024年CAD工程師認證考試的題型解析試題及答案
- 2025年北方華創工作人員招聘考試筆試試題
- 2025 年中職高考對口升學(幼兒教育學)真題試卷附參考答案
- 2025承諾合同(個人承諾)
評論
0/150
提交評論