2023-2024學年浙江省諸暨市浬浦中學中考聯考數學試卷含解析_第1頁
2023-2024學年浙江省諸暨市浬浦中學中考聯考數學試卷含解析_第2頁
2023-2024學年浙江省諸暨市浬浦中學中考聯考數學試卷含解析_第3頁
2023-2024學年浙江省諸暨市浬浦中學中考聯考數學試卷含解析_第4頁
2023-2024學年浙江省諸暨市浬浦中學中考聯考數學試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年浙江省諸暨市浬浦中學中考聯考數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.如圖,正方形ABCD的邊長為3cm,動點P從B點出發以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達A點停止運動;另一動點Q同時從B點出發,以1cm/s的速度沿著邊BA向A點運動,到達A點停止運動.設P點運動時間為x(s),△BPQ的面積為y(cm2),則y關于x的函數圖象是()A. B. C. D.2.如圖,二次函數y=ax2+bx+c(a≠0)的圖象與x軸的正半軸相交于A,B兩點,與y軸相交于點C,對稱軸為直線x=2,且OA=OC.有下列結論:①abc<0;②3b+4c<0;③c>﹣1;④關于x的方程ax2+bx+c=0有一個根為﹣,其中正確的結論個數是()A.1 B.2 C.3 D.43.如圖,兩根竹竿AB和AD斜靠在墻CE上,量得∠ABC=,∠ADC=,則竹竿AB與AD的長度之比為A. B. C. D.4.如圖,已知菱形ABCD的對角線AC.BD的長分別為6cm、8cm,AE⊥BC于點E,則AE的長是()A. B. C. D.5.已知圓錐的底面半徑為2cm,母線長為5cm,則圓錐的側面積是()A.20cm2 B.20πcm2 C.10πcm2 D.5πcm26.小亮家與姥姥家相距24km,小亮8:00從家出發,騎自行車去姥姥家.媽媽8:30從家出發,乘車沿相同路線去姥姥家.在同一直角坐標系中,小亮和媽媽的行進路程s(km)與時間t(h)的函數圖象如圖所示.根據圖象得出下列結論,其中錯誤的是()A.小亮騎自行車的平均速度是12km/hB.媽媽比小亮提前0.5h到達姥姥家C.媽媽在距家12km處追上小亮D.9:30媽媽追上小亮7.下面調查中,適合采用全面調查的是()A.對南寧市市民進行“南寧地鐵1號線線路”B.對你安寧市食品安全合格情況的調查C.對南寧市電視臺《新聞在線》收視率的調查D.對你所在的班級同學的身高情況的調查8.二次函數y=ax2+bx﹣2(a≠0)的圖象的頂點在第三象限,且過點(1,0),設t=a﹣b﹣2,則t值的變化范圍是()A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<09.已知二次函數y=(x+m)2–n的圖象如圖所示,則一次函數y=mx+n與反比例函數y=的圖象可能是()A. B. C. D.10.如圖,這是由5個大小相同的整體搭成的幾何體,該幾何體的左視圖是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.分解因式:2x2-8x+8=__________.12.分解因式:8x2-8xy+2y2=_________________________.13.如圖,在△ABC中,AB=AC=10cm,F為AB上一點,AF=2,點E從點A出發,沿AC方向以2cm/s的速度勻速運動,同時點D由點B出發,沿BA方向以lcm/s的速度運動,設運動時間為t(s)(0<t<5),連D交CF于點G.若CG=2FG,則t的值為_____.14.在△ABC中,∠C=90°,sinA=,BC=4,則AB值是_____.15.在10個外觀相同的產品中,有2個不合格產品,現從中任意抽取1個進行檢測,抽到合格產品的概率是.16.如圖,矩形ABCD的面積為20cm2,對角線交于點O;以AB、AO為鄰邊作平行四邊形AOC1B,對角線交于點O1;以AB、AO1為鄰邊作平行四邊形AO1C2B;…;依此類推,則平行四邊形AO4C5B的面積為_____.三、解答題(共8題,共72分)17.(8分)先化簡,再求值÷(x﹣),其中x=.18.(8分)如圖,一棵大樹在一次強臺風中折斷倒下,未折斷樹桿與地面仍保持垂直的關系,而折斷部分與未折斷樹桿形成的夾角.樹桿旁有一座與地面垂直的鐵塔,測得米,塔高米.在某一時刻的太陽照射下,未折斷樹桿落在地面的影子長為米,且點、、、在同一條直線上,點、、也在同一條直線上.求這棵大樹沒有折斷前的高度.(結果精確到,參考數據:,,).19.(8分)如圖,已知拋物線y=x2﹣4與x軸交于點A,B(點A位于點B的左側),C為頂點,直線y=x+m經過點A,與y軸交于點D.求線段AD的長;平移該拋物線得到一條新拋物線,設新拋物線的頂點為C′.若新拋物線經過點D,并且新拋物線的頂點和原拋物線的頂點的連線CC′平行于直線AD,求新拋物線對應的函數表達式.20.(8分)關于x的一元二次方程ax2+bx+1=1.(1)當b=a+2時,利用根的判別式判斷方程根的情況;(2)若方程有兩個相等的實數根,寫出一組滿足條件的a,b的值,并求此時方程的根.21.(8分)為實施“農村留守兒童關愛計劃”,某校結全校各班留守兒童的人數情況進行了統計,發現各班留守兒童人數只有1名、2名、3名、4名、5名、6名共六種情況,并制成如下兩幅不完整的統計圖:求該校平均每班有多少名留守兒童?并將該條形統計圖補充完整;某愛心人士決定從只有2名留守兒童的這些班級中,任選兩名進行生活資助,請用列表法或畫樹狀圖的方法,求出所選兩名留守兒童來自同一個班級的概率.22.(10分)學校決定在學生中開設:A、實心球;B、立定跳遠;C、跳繩;D、跑步四種活動項目.為了了解學生對四種項目的喜歡情況,隨機抽取了部分學生進行調查,并將調查結果繪制成如圖①②的統計圖,請結合圖中的信息解答下列問題:(1)在這項調查中,共調查了多少名學生?(2)請計算本項調查中喜歡“立定跳遠”的學生人數和所占百分比,并將兩個統計圖補充完整.(3)若調查到喜歡“跳繩”的5名學生中有2名男生,3名女生,現從這5名學生中任意抽取2名學生,請用畫樹狀圖或列表法求出剛好抽到不同性別學生的概率.23.(12分)今年以來,我國持續大面積的霧霾天氣讓環保和健康問題成為焦點.為了調查學生對霧霾天氣知識的了解程度,某校在學生中做了一次抽樣調查,調查結果共分為四個等級:A.非常了解;B.比較了解;C.基本了解;D.不了解.根據調查統計結果,繪制了不完整的三種統計圖表.對霧霾了解程度的統計表:對霧霾的了解程度

百分比

A.非常了解

5%

B.比較了解

m

C.基本了解

45%

D.不了解

n

請結合統計圖表,回答下列問題.(1)本次參與調查的學生共有人,m=,n=;(2)圖2所示的扇形統計圖中D部分扇形所對應的圓心角是度;(3)請補全條形統計圖;(4)根據調查結果,學校準備開展關于霧霾知識競賽,某班要從“非常了解”態度的小明和小剛中選一人參加,現設計了如下游戲來確定,具體規則是:把四個完全相同的乒乓球標上數字1,2,3,4,然后放到一個不透明的袋中,一個人先從袋中隨機摸出一個球,另一人再從剩下的三個球中隨機摸出一個球.若摸出的兩個球上的數字和為奇數,則小明去;否則小剛去.請用樹狀圖或列表法說明這個游戲規則是否公平.24.如圖1,在四邊形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中點,P是AB上的任意一點,連接PE,將PE繞點P逆時針旋轉90°得到PQ.(1)如圖2,過A點,D點作BC的垂線,垂足分別為M,N,求sinB的值;(2)若P是AB的中點,求點E所經過的路徑弧EQ的長(結果保留π);(3)若點Q落在AB或AD邊所在直線上,請直接寫出BP的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:由題意可得BQ=x.①0≤x≤1時,P點在BC邊上,BP=3x,則△BPQ的面積=BP?BQ,解y=?3x?x=;故A選項錯誤;②1<x≤2時,P點在CD邊上,則△BPQ的面積=BQ?BC,解y=?x?3=;故B選項錯誤;③2<x≤3時,P點在AD邊上,AP=9﹣3x,則△BPQ的面積=AP?BQ,解y=?(9﹣3x)?x=;故D選項錯誤.故選C.考點:動點問題的函數圖象.2、B【解析】

由二次函數圖象的開口方向、對稱軸及與y軸的交點可分別判斷出a、b、c的符號,從而可判斷①;由對稱軸=2可知a=,由圖象可知當x=1時,y>0,可判斷②;由OA=OC,且OA<1,可判斷③;把-代入方程整理可得ac2-bc+c=0,結合③可判斷④;從而可得出答案.【詳解】解:∵圖象開口向下,∴a<0,∵對稱軸為直線x=2,∴>0,∴b>0,∵與y軸的交點在x軸的下方,∴c<0,∴abc>0,故①錯誤.∵對稱軸為直線x=2,∴=2,∴a=,∵由圖象可知當x=1時,y>0,∴a+b+c>0,∴4a+4b+4c>0,∴4()+4b+4c>0,∴3b+4c>0,故②錯誤.∵由圖象可知OA<1,且OA=OC,∴OC<1,即-c<1,∴c>-1,故③正確.∵假設方程的一個根為x=-,把x=-代入方程可得+c=0,整理可得ac-b+1=0,兩邊同時乘c可得ac2-bc+c=0,∴方程有一個根為x=-c,由③可知-c=OA,而當x=OA是方程的根,∴x=-c是方程的根,即假設成立,故④正確.綜上可知正確的結論有三個:③④.故選B.【點睛】本題主要考查二次函數的圖象和性質.熟練掌握圖象與系數的關系以及二次函數與方程、不等式的關系是解題的關鍵.特別是利用好題目中的OA=OC,是解題的關鍵.3、B【解析】

在兩個直角三角形中,分別求出AB、AD即可解決問題;【詳解】在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故選B.【點睛】本題考查解直角三角形的應用、銳角三角函數等知識,解題的關鍵是學會利用參數解決問題.4、D【解析】

根據菱形的性質得出BO、CO的長,在RT△BOC中求出BC,利用菱形面積等于對角線乘積的一半,也等于BC×AE,可得出AE的長度.【詳解】∵四邊形ABCD是菱形,∴CO=AC=3,BO=BD=,AO⊥BO,∴.∴.又∵,∴BC·AE=24,即.故選D.點睛:此題考查了菱形的性質,也涉及了勾股定理,要求我們掌握菱形的面積的兩種表示方法,及菱形的對角線互相垂直且平分.5、C【解析】圓錐的側面積=底面周長×母線長÷2,把相應數值代入,圓錐的側面積=2π×2×5÷2=10π.故答案為C6、D【解析】

根據函數圖象可知根據函數圖象小亮去姥姥家所用時間為10﹣8=2小時,進而得到小亮騎自行車的平均速度,對應函數圖象,得到媽媽到姥姥家所用的時間,根據交點坐標確定媽媽追上小亮所用時間,即可解答.【詳解】解:A、根據函數圖象小亮去姥姥家所用時間為10﹣8=2小時,∴小亮騎自行車的平均速度為:24÷2=12(km/h),故正確;B、由圖象可得,媽媽到姥姥家對應的時間t=9.5,小亮到姥姥家對應的時間t=10,10﹣9.5=0.5(小時),∴媽媽比小亮提前0.5小時到達姥姥家,故正確;C、由圖象可知,當t=9時,媽媽追上小亮,此時小亮離家的時間為9﹣8=1小時,∴小亮走的路程為:1×12=12km,∴媽媽在距家12km出追上小亮,故正確;D、由圖象可知,當t=9時,媽媽追上小亮,故錯誤;故選D.【點睛】本題考查函數圖像的應用,從圖像中讀取關鍵信息是解題的關鍵.7、D【解析】

根據普查得到的調查結果比較準確,但所費人力、物力和時間較多,而抽樣調查得到的調查結果比較近似解答.【詳解】A、對南寧市市民進行“南寧地鐵1號線線路”適宜采用抽樣調查方式;B、對你安寧市食品安全合格情況的調查適宜采用抽樣調查方式;C、對南寧市電視臺《新聞在線》收視率的調查適宜采用抽樣調查方式;D、對你所在的班級同學的身高情況的調查適宜采用普查方式;故選D.【點睛】本題考查的是抽樣調查和全面調查的區別,選擇普查還是抽樣調查要根據所要考查的對象的特征靈活選用,一般來說,對于具有破壞性的調查、無法進行普查、普查的意義或價值不大,應選擇抽樣調查,對于精確度要求高的調查,事關重大的調查往往選用普查.8、D【解析】

由二次函數的解析式可知,當x=1時,所對應的函數值y=a+b-2,把點(1,0)代入y=ax2+bx-2,a+b-2=0,然后根據頂點在第三象限,可以判斷出a與b的符號,進而求出t=a-b-2的變化范圍.【詳解】解:∵二次函數y=ax2+bx-2的頂點在第三象限,且經過點(1,0)∴該函數是開口向上的,a>0

∵y=ax2+bx﹣2過點(1,0),∴a+b-2=0.∵a>0,∴2-b>0.∵頂點在第三象限,∴-<0.∴b>0.∴2-a>0.∴0<b<2.∴0<a<2.∴t=a-b-2.∴﹣4<t<0.【點睛】本題考查大小二次函數的圖像,熟練掌握圖像的性質是解題的關鍵.9、C【解析】試題解析:觀察二次函數圖象可知:∴一次函數y=mx+n的圖象經過第一、二、四象限,反比例函數的圖象在第二、四象限.故選D.10、A【解析】

觀察所給的幾何體,根據三視圖的定義即可解答.【詳解】左視圖有2列,每列小正方形數目分別為2,1.故選A.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.二、填空題(本大題共6個小題,每小題3分,共18分)11、2(x-2)2【解析】

先運用提公因式法,再運用完全平方公式.【詳解】:2x2-8x+8=.故答案為2(x-2)2.【點睛】本題考核知識點:因式分解.解題關鍵點:熟練掌握分解因式的基本方法.12、1【解析】

提取公因式1,再對余下的多項式利用完全平方公式繼續分解.完全平方公式:a1±1ab+b1=(a±b)1.【詳解】8x1-8xy+1y2=1(4x1-4xy+y2)=1(1x-y)1.故答案為:1(1x-y)1【點睛】此題考查的是提取公因式法和公式法分解因式,本題關鍵在于提取公因式可以利用完全平方公式進行二次因式分解.13、1【解析】

過點C作CH∥AB交DE的延長線于點H,則,證明,可求出CH,再證明,由比例線段可求出t的值.【詳解】如下圖,過點C作CH∥AB交DE的延長線于點H,則,∵DF∥CH,∴,∴,∴,同理,∴,∴,解得t=1,t=(舍去),故答案為:1.【點睛】本題主要考查了三角形中的動點問題,熟練掌握三角形相似的相關方法是解決本題的關鍵.14、6【解析】

根據正弦函數的定義得出sinA=,即,即可得出AB的值.【詳解】∵sinA=,即,∴AB=1,故答案為1.【點睛】本題考查了解直角三角形,熟練掌握正弦函數的定義是解題的關鍵.15、【解析】

試題分析:根據概率的意義,用符合條件的數量除以總數即可,即.考點:概率16、【解析】試題分析:根據矩形的性質求出△AOB的面積等于矩形ABCD的面積的,求出△AOB的面積,再分別求出、、、的面積,即可得出答案∵四邊形ABCD是矩形,∴AO=CO,BO=DO,DC∥AB,DC=AB,∴,∴,∴,∴,,,∴考點:矩形的性質;平行四邊形的性質點評:本題考查了矩形的性質,平行四邊形的性質,三角形的面積的應用,解此題的關鍵是能根據求出的結果得出規律,注意:等底等高的三角形的面積相等三、解答題(共8題,共72分)17、6【解析】【分析】括號內先通分進行分式加減運算,然后再與括號外的分式進行乘除運算,化簡后代入x的值進行計算即可得.【詳解】原式===,當x=,原式==6.【點睛】本題考查了分式的化簡求值,根據所給的式子確定運算順序、熟練應用相關的運算法則是解題的關鍵.18、米.【解析】試題分析:要求這棵大樹沒有折斷前的高度,只要求出AB和AC的長度即可,根據題目中的條件可以求得AB和AC的長度,即可得到結論.試題解析:解:∵AB⊥EF,DE⊥EF,∴∠ABC=90°,AB∥DE,∴△FAB∽△FDE,∴,∵FB=4米,BE=6米,DE=9米,∴,得AB=3.6米,∵∠ABC=90°,∠BAC=53°,cos∠BAC=,∴AC===6米,∴AB+AC=3.6+6=9.6米,即這棵大樹沒有折斷前的高度是9.6米.點睛:本題考查直角三角形的應用,解題的關鍵是明確題意,找出所求問題需要的條件,利用銳角三角函數進行解答.19、(1)1;(1)y=x1﹣4x+1或y=x1+6x+1.【解析】

(1)解方程求出點A的坐標,根據勾股定理計算即可;(1)設新拋物線對應的函數表達式為:y=x1+bx+1,根據二次函數的性質求出點C′的坐標,根據題意求出直線CC′的解析式,代入計算即可.【詳解】解:(1)由x1﹣4=0得,x1=﹣1,x1=1,∵點A位于點B的左側,∴A(﹣1,0),∵直線y=x+m經過點A,∴﹣1+m=0,解得,m=1,∴點D的坐標為(0,1),∴AD==1;(1)設新拋物線對應的函數表達式為:y=x1+bx+1,y=x1+bx+1=(x+)1+1﹣,則點C′的坐標為(﹣,1﹣),∵CC′平行于直線AD,且經過C(0,﹣4),∴直線CC′的解析式為:y=x﹣4,∴1﹣=﹣﹣4,解得,b1=﹣4,b1=6,∴新拋物線對應的函數表達式為:y=x1﹣4x+1或y=x1+6x+1.【點睛】本題考查的是拋物線與x軸的交點、待定系數法求函數解析式,掌握二次函數的性質、拋物線與x軸的交點的求法是解題的關鍵.20、(2)方程有兩個不相等的實數根;(2)b=-2,a=2時,x2=x2=﹣2.【解析】

分析:(2)求出根的判別式,判斷其范圍,即可判斷方程根的情況.(2)方程有兩個相等的實數根,則,寫出一組滿足條件的,的值即可.詳解:(2)解:由題意:.∵,∴原方程有兩個不相等的實數根.(2)答案不唯一,滿足()即可,例如:解:令,,則原方程為,解得:.點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數根.當時,方程有兩個相等的實數根.當時,方程沒有實數根.21、解:(1)該校班級個數為4÷20%=20(個),只有2名留守兒童的班級個數為:20﹣(2+3+4+5+4)=2(個),該校平均每班留守兒童的人數為:=4(名),補圖如下:(2)由(1)得只有2名留守兒童的班級有2個,共4名學生.設A1,A2來自一個班,B1,B2來自一個班,有樹狀圖可知,共有12中等可能的情況,其中來自一個班的共有4種情況,則所選兩名留守兒童來自同一個班級的概率為:=.【解析】(1)首先求出班級數,然后根據條形統計圖求出只有2名留守兒童的班級數,再求出總的留守兒童數,最后求出每班平均留守兒童數;(2)利用樹狀圖確定可能種數和來自同一班的種數,然后就能算出來自同一個班級的概率.22、(1)150;(2)詳見解析;(3).【解析】

(1)用A類人數除以它所占的百分比得到調查的總人數;(2)用總人數分別減去A、C、D得到B類人數,再計算出它所占的百分比,然后補全兩個統計圖;(3)畫樹狀圖展示所有20種等可能的結果數,再找出剛好抽到不同性別學生的結果數,然后利用概率公式求解.【詳解】解:(1)15÷10%=150,所以共調查了150名學生;(2)喜歡“立定跳遠”學生的人數為150﹣15﹣60﹣30=45,喜歡“立定跳遠”的學生所占百分比為1﹣20%﹣40%﹣10%=30%,兩個統計圖補充為:(3)畫樹狀圖為:共有20種等可能的結果數,其中剛好抽到不同性別學生的結果數為12,所以剛好抽到不同性別學生的概率【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.也考查了統計圖.23、解:(1)400;15%;35%.(2)1.(3)∵D等級的人數為:400×35%=140,∴補全條形統計圖如圖所示:(4)列樹狀圖得:∵從樹狀圖可以看出所有可能的結果有12種,數字之和為奇數的有8種,∴小明參加的概率為:P(數字之和為奇數);小剛參加的概率為:P(數字之和為偶數).∵P(數字之和為奇數)≠P(數字之和為偶數),∴游戲規則不公平.【解析】(1)根據“基本了解”的人數以及所占比例,可求得總人數:180÷45%=400人.在根據頻數、百分比之間的關系,可得m,n的值:.(2)根

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論