吉林省通化市2024年高三第三次模擬考試數學試卷含解析_第1頁
吉林省通化市2024年高三第三次模擬考試數學試卷含解析_第2頁
吉林省通化市2024年高三第三次模擬考試數學試卷含解析_第3頁
吉林省通化市2024年高三第三次模擬考試數學試卷含解析_第4頁
吉林省通化市2024年高三第三次模擬考試數學試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省通化市2024年高三第三次模擬考試數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,是非零向量,若對于任意的,都有成立,則A. B. C. D.2.我國古代數學家秦九韶在《數書九章》中記述了“三斜求積術”,用現代式子表示即為:在中,角所對的邊分別為,則的面積.根據此公式,若,且,則的面積為()A. B. C. D.3.盒子中有編號為1,2,3,4,5,6,7的7個相同的球,從中任取3個編號不同的球,則取的3個球的編號的中位數恰好為5的概率是()A. B. C. D.4.已知定義在上的函數在區間上單調遞增,且的圖象關于對稱,若實數滿足,則的取值范圍是()A. B. C. D.5.已知集合,,則集合的真子集的個數是()A.8 B.7 C.4 D.36.執行如圖所示的程序框圖,若輸入的,則輸出的()A.9 B.31 C.15 D.637.設是等差數列的前n項和,且,則()A. B. C.1 D.28.已知圓錐的高為3,底面半徑為,若該圓錐的頂點與底面的圓周都在同一個球面上,則這個球的體積與圓錐的體積的比值為()A. B. C. D.9.設正項等差數列的前項和為,且滿足,則的最小值為A.8 B.16 C.24 D.3610.若雙曲線的離心率,則該雙曲線的焦點到其漸近線的距離為()A. B.2 C. D.111.已知函數的圖象與直線的相鄰交點間的距離為,若定義,則函數,在區間內的圖象是()A. B.C. D.12.已知是邊長為1的等邊三角形,點,分別是邊,的中點,連接并延長到點,使得,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設滿足約束條件,則目標函數的最小值為_.14.已知數列與均為等差數列(),且,則______.15.在平面直角坐標系xOy中,若圓C1:x2+(y-1)2=r2(r>0)上存在點P,且點P關于直線x-y=0的對稱點Q在圓C2:(x-2)2+(y-1)2=1上,則r的取值范圍是________.16.若點為點在平面上的正投影,則記.如圖,在棱長為1的正方體中,記平面為,平面為,點是線段上一動點,.給出下列四個結論:①為的重心;②;③當時,平面;④當三棱錐的體積最大時,三棱錐外接球的表面積為.其中,所有正確結論的序號是________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在四棱錐中,是等邊三角形,點在棱上,平面平面.(1)求證:平面平面;(2)若,求直線與平面所成角的正弦值的最大值;(3)設直線與平面相交于點,若,求的值.18.(12分)如圖,湖中有一個半徑為千米的圓形小島,岸邊點與小島圓心相距千米,為方便游人到小島觀光,從點向小島建三段棧道,,,湖面上的點在線段上,且,均與圓相切,切點分別為,,其中棧道,,和小島在同一個平面上.沿圓的優弧(圓上實線部分)上再修建棧道.記為.用表示棧道的總長度,并確定的取值范圍;求當為何值時,棧道總長度最短.19.(12分)已知等差數列中,,數列的前項和.(1)求;(2)若,求的前項和.20.(12分)改革開放40年,我國經濟取得飛速發展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調查.隨機抽取男女駕駛員各50人,進行問卷測評,所得分數的頻率分布直方圖如圖所示.規定得分在80分以上為交通安全意識強.安全意識強安全意識不強合計男性女性合計(Ⅰ)求的值,并估計該城市駕駛員交通安全意識強的概率;(Ⅱ)已知交通安全意識強的樣本中男女比例為4:1,完成2×2列聯表,并判斷有多大把握認為交通安全意識與性別有關;(Ⅲ)在(Ⅱ)的條件下,從交通安全意識強的駕駛員中隨機抽取2人,求抽到的女性人數的分布列及期望.附:,其中0.0100.0050.0016.6357.87910.82821.(12分)已知分別是橢圓的左、右焦點,直線與交于兩點,,且.(1)求的方程;(2)已知點是上的任意一點,不經過原點的直線與交于兩點,直線的斜率都存在,且,求的值.22.(10分)已知函數.(Ⅰ)若是第二象限角,且,求的值;(Ⅱ)求函數的定義域和值域.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

畫出,,根據向量的加減法,分別畫出的幾種情況,由數形結合可得結果.【詳解】由題意,得向量是所有向量中模長最小的向量,如圖,當,即時,最小,滿足,對于任意的,所以本題答案為D.【點睛】本題主要考查了空間向量的加減法,以及點到直線的距離最短問題,解題的關鍵在于用有向線段正確表示向量,屬于基礎題.2、A【解析】

根據,利用正弦定理邊化為角得,整理為,根據,得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因為,所以,由余弦定理,所以,由的面積公式得故選:A【點睛】本題主要考查正弦定理和余弦定理以及類比推理,還考查了運算求解的能力,屬于中檔題.3、B【解析】

由題意,取的3個球的編號的中位數恰好為5的情況有,所有的情況有種,由古典概型的概率公式即得解.【詳解】由題意,取的3個球的編號的中位數恰好為5的情況有,所有的情況有種由古典概型,取的3個球的編號的中位數恰好為5的概率為:故選:B【點睛】本題考查了排列組合在古典概型中的應用,考查了學生綜合分析,概念理解,數學運算的能力,屬于中檔題.4、C【解析】

根據題意,由函數的圖象變換分析可得函數為偶函數,又由函數在區間上單調遞增,分析可得,解可得的取值范圍,即可得答案.【詳解】將函數的圖象向左平移個單位長度可得函數的圖象,由于函數的圖象關于直線對稱,則函數的圖象關于軸對稱,即函數為偶函數,由,得,函數在區間上單調遞增,則,得,解得.因此,實數的取值范圍是.故選:C.【點睛】本題考查利用函數的單調性與奇偶性解不等式,注意分析函數的奇偶性,屬于中等題.5、D【解析】

轉化條件得,利用元素個數為n的集合真子集個數為個即可得解.【詳解】由題意得,,集合的真子集的個數為個.故選:D.【點睛】本題考查了集合的化簡和運算,考查了集合真子集個數問題,屬于基礎題.6、B【解析】

根據程序框圖中的循環結構的運算,直至滿足條件退出循環體,即可得出結果.【詳解】執行程序框;;;;;,滿足,退出循環,因此輸出,故選:B.【點睛】本題考查循環結構輸出結果,模擬程序運行是解題的關鍵,屬于基礎題.7、C【解析】

利用等差數列的性質化簡已知條件,求得的值.【詳解】由于等差數列滿足,所以,,.故選:C【點睛】本小題主要考查等差數列的性質,屬于基礎題.8、B【解析】

計算求半徑為,再計算球體積和圓錐體積,計算得到答案.【詳解】如圖所示:設球半徑為,則,解得.故求體積為:,圓錐的體積:,故.故選:.【點睛】本題考查了圓錐,球體積,圓錐的外接球問題,意在考查學生的計算能力和空間想象能力.9、B【解析】

方法一:由題意得,根據等差數列的性質,得成等差數列,設,則,,則,當且僅當時等號成立,從而的最小值為16,故選B.方法二:設正項等差數列的公差為d,由等差數列的前項和公式及,化簡可得,即,則,當且僅當,即時等號成立,從而的最小值為16,故選B.10、C【解析】

根據雙曲線的解析式及離心率,可求得的值;得漸近線方程后,由點到直線距離公式即可求解.【詳解】雙曲線的離心率,則,,解得,所以焦點坐標為,所以,則雙曲線漸近線方程為,即,不妨取右焦點,則由點到直線距離公式可得,故選:C.【點睛】本題考查了雙曲線的幾何性質及簡單應用,漸近線方程的求法,點到直線距離公式的簡單應用,屬于基礎題.11、A【解析】

由題知,利用求出,再根據題給定義,化簡求出的解析式,結合正弦函數和正切函數圖象判斷,即可得出答案.【詳解】根據題意,的圖象與直線的相鄰交點間的距離為,所以的周期為,則,所以,由正弦函數和正切函數圖象可知正確.故選:A.【點睛】本題考查三角函數中正切函數的周期和圖象,以及正弦函數的圖象,解題關鍵是對新定義的理解.12、D【解析】

設,,作為一個基底,表示向量,,,然后再用數量積公式求解.【詳解】設,,所以,,,所以.故選:D【點睛】本題主要考查平面向量的基本運算,還考查了運算求解的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據滿足約束條件,畫出可行域,將目標函數,轉化為,平移直線,找到直線在軸上截距最小時的點,此時,目標函數取得最小值.【詳解】由滿足約束條件,畫出可行域如圖所示陰影部分:將目標函數,轉化為,平移直線,找到直線在軸上截距最小時的點此時,目標函數取得最小值,最小值為故答案為:-1【點睛】本題主要考查線性規劃求最值,還考查了數形結合的思想方法,屬于基礎題.14、20【解析】

設等差數列的公差為,由數列為等差數列,且,根據等差中項的性質可得,,解方程求出公差,代入等差數列的通項公式即可求解.【詳解】設等差數列的公差為,由數列為等差數列知,,因為,所以,解得,所以數列的通項公式為,所以.故答案為:【點睛】本題考查等差數列的概念及其通項公式和等差中項;考查運算求解能力;等差中項的運用是求解本題的關鍵;屬于基礎題.15、【解析】

設圓C1上存在點P(x0,y0),則Q(y0,x0),分別滿足兩個圓的方程,列出方程組,轉化成兩個新圓有公共點求參數范圍.【詳解】設圓C1上存在點P(x0,y0)滿足題意,點P關于直線x-y=0的對稱點Q(y0,x0),則,故只需圓x2+(y-1)2=r2與圓(x-1)2+(y-2)2=1有交點即可,所以|r-1|≤≤r+1,解得.故答案為:【點睛】此題考查圓與圓的位置關系,其中涉及點關于直線對稱點問題,兩個圓有公共點的判定方式.16、①②③【解析】

①點在平面內的正投影為點,而正方體的體對角線與和它不相交的的面對角線垂直,所以直線垂直于平面,而為正三角形,可得為正三角形的重心,所以①是正確的;②取的中點,連接,則點在平面的正投影在上,記為,而平面平面,所以,所以②正確;③若設,則由可得,然后對應邊成比例,可解,所以③正確;④由于,而的面積是定值,所以當點到平面的距離最大時,三棱錐的體積最大,而當點與點重合時,點到平面的距離最大,此時為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.【詳解】因為,連接,則有平面平面為正三角形,所以為正三角形的中心,也是的重心,所以①正確;由平面,可知平面平面,記,由,可得平面平面,則,所以②正確;若平面,則,設由得,易得,由,則,由得,,解得,所以③正確;當與重合時,最大,為棱長為的正四面體,其外接球半徑,則球,所以④錯誤.故答案為:①②③【點睛】此題考查立體幾何中的垂直、平行關系,求幾何體的體積,考查空間想象能力和推理能力,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)(3)【解析】

(1)取中點為,連接,由等邊三角形性質可得,再由面面垂直的性質可得,根據平行直線的性質可得,進而求證;(2)以為原點,過作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標系,設,由點在棱上,可設,即可得到,再求得平面的法向量,進而利用數量積求解;(3)設,,則,求得,,即可求得點的坐標,再由與平面的法向量垂直,進而求解.【詳解】(1)證明:取中點為,連接,因為是等邊三角形,所以,因為且相交于,所以平面,所以,因為,所以,因為,在平面內,所以,所以.(2)以為原點,過作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標系,設,則,,,,因為在棱上,可設,所以,設平面的法向量為,因為,所以,即,令,可得,即,設直線與平面所成角為,所以,可知當時,取最大值.(3)設,則有,得,設,那么,所以,所以.因為,,所以.又因為,所以,,設平面的法向量為,則,即,,可得,即因為在平面內,所以,所以,所以,即,所以或者(舍),即.【點睛】本題考查面面垂直的證明,考查空間向量法求線面成角,考查運算能力與空間想象能力.18、,;當時,棧道總長度最短.【解析】

連,,由切線長定理知:,,,,即,,則,,進而確定的取值范圍;根據求導得,利用增減性算出,進而求得取值.【詳解】解:連,,由切線長定理知:,,,又,,故,則劣弧的長為,因此,優弧的長為,又,故,,即,,所以,,,則;,,其中,,-0+單調遞減極小值單調遞增故時,所以當時,棧道總長度最短.【點睛】本題主要考查導數在函數當中的應用,屬于中檔題.19、(1),;(2).【解析】

(1)由條件得出方程組,可求得的通項,當時,,可得,當時,,得出是以1為首項,2為公比的等比數列,可求得的通項;(2)由(1)可知,,分n為偶數和n為奇數分別求得.【詳解】(1)由條件知,,,當時,,即,當時,,是以1為首項,2為公比的等比數列,;(2)由(1)可知,,當n為偶數時,當n為奇數時,綜上,【點睛】本題考查等差數列和等比數列的通項的求得,以及其前n項和,注意分n為偶數和n為奇數兩種情況分別求得其數列的和,屬于中檔題.20、(Ⅰ).0.2(Ⅱ)見解析,有的把握認為交通安全意識與性別有關(Ⅲ)見解析,【解析】

(Ⅰ)直接根據頻率和為1計算得到答案.(Ⅱ)完善列聯表,計算,對比臨界值表得到答案.(Ⅲ)的取值為,計算概率得到分布列,計算數學期望得到答案.【詳解】(Ⅰ),解得.所以該

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論