




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年山東省菏澤市鄄城縣第一中學高考仿真卷數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.袋中裝有標號為1,2,3,4,5,6且大小相同的6個小球,從袋子中一次性摸出兩個球,記下號碼并放回,如果兩個號碼的和是3的倍數,則獲獎,若有5人參與摸球,則恰好2人獲獎的概率是()A. B. C. D.2.已知平面向量滿足與的夾角為,且,則實數的值為()A. B. C. D.3.雙曲線的漸近線方程為()A. B. C. D.4.已知直線:與橢圓交于、兩點,與圓:交于、兩點.若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.5.正方體,是棱的中點,在任意兩個中點的連線中,與平面平行的直線有幾條()A.36 B.21 C.12 D.66.設為銳角,若,則的值為()A. B. C. D.7.設,,,則,,三數的大小關系是A. B.C. D.8.復數滿足,則復數等于()A. B. C.2 D.-29.我國數學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果.哥德巴赫猜想是“每個大于2的偶數可以表示為兩個素數(即質數)的和”,如,.在不超過20的素數中,隨機選取兩個不同的數,其和等于20的概率是()A. B. C. D.以上都不對10.下列說法正確的是()A.“若,則”的否命題是“若,則”B.在中,“”是“”成立的必要不充分條件C.“若,則”是真命題D.存在,使得成立11.已知、,,則下列是等式成立的必要不充分條件的是()A. B.C. D.12.在中,角的對邊分別為,若.則角的大小為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.春天即將來臨,某學校開展以“擁抱春天,播種綠色”為主題的植物種植實踐體驗活動.已知某種盆栽植物每株成活的概率為,各株是否成活相互獨立.該學校的某班隨機領養了此種盆栽植物10株,設為其中成活的株數,若的方差,,則________.14.在中,已知,則的最小值是________.15.的二項展開式中,含項的系數為__________.16.已知,則_____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知a,b∈R,設函數f(x)=(I)若b=0,求f(x)的單調區間:(II)當x∈[0,+∞)時,f(x)的最小值為0,求a+5b的最大值.注:18.(12分)已知數列,滿足.(1)求數列,的通項公式;(2)分別求數列,的前項和,.19.(12分)在直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)寫出直線的普通方程和曲線的直角坐標方程;(2)設直線與曲線相交于兩點,的頂點也在曲線上運動,求面積的最大值.20.(12分)已知函數f(x)=|x-1|+|x-2|.若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,求實數x的取值范圍.21.(12分)如圖,在三棱柱中,,,,為的中點,且.(1)求證:平面;(2)求銳二面角的余弦值.22.(10分)如圖,三棱錐中,點,分別為,的中點,且平面平面.求證:平面;若,,求證:平面平面.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
先確定摸一次中獎的概率,5個人摸獎,相當于發生5次試驗,根據每一次發生的概率,利用獨立重復試驗的公式得到結果.【詳解】從6個球中摸出2個,共有種結果,兩個球的號碼之和是3的倍數,共有摸一次中獎的概率是,5個人摸獎,相當于發生5次試驗,且每一次發生的概率是,有5人參與摸獎,恰好有2人獲獎的概率是,故選:.【點睛】本題主要考查了次獨立重復試驗中恰好發生次的概率,考查獨立重復試驗的概率,解題時主要是看清摸獎5次,相當于做了5次獨立重復試驗,利用公式做出結果,屬于中檔題.2、D【解析】
由已知可得,結合向量數量積的運算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點睛】本題考查向量的數量積運算,向量垂直的應用,考查計算求解能力,屬于基礎題.3、C【解析】
根據雙曲線的標準方程,即可寫出漸近線方程.【詳解】雙曲線,雙曲線的漸近線方程為,故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,屬于容易題.4、A【解析】
由題意可知直線過定點即為圓心,由此得到坐標的關系,再根據點差法得到直線的斜率與坐標的關系,由此化簡并求解出離心率的取值范圍.【詳解】設,且線過定點即為的圓心,因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以.故選:A.【點睛】本題考查橢圓與圓的綜合應用,著重考查了橢圓離心率求解以及點差法的運用,難度一般.通過運用點差法達到“設而不求”的目的,大大簡化運算.5、B【解析】
先找到與平面平行的平面,利用面面平行的定義即可得到.【詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.【點睛】本題考查線面平行的判定定理以及面面平行的定義,涉及到了簡單的組合問題,是一中檔題.6、D【解析】
用誘導公式和二倍角公式計算.【詳解】.故選:D.【點睛】本題考查誘導公式、余弦的二倍角公式,解題關鍵是找出已知角和未知角之間的聯系.7、C【解析】
利用對數函數,指數函數以及正弦函數的性質和計算公式,將a,b,c與,比較即可.【詳解】由,,,所以有.選C.【點睛】本題考查對數值,指數值和正弦值大小的比較,是基礎題,解題時選擇合適的中間值比較是關鍵,注意合理地進行等價轉化.8、B【解析】
通過復數的模以及復數的代數形式混合運算,化簡求解即可.【詳解】復數滿足,∴,故選B.【點睛】本題主要考查復數的基本運算,復數模長的概念,屬于基礎題.9、A【解析】
首先確定不超過的素數的個數,根據古典概型概率求解方法計算可得結果.【詳解】不超過的素數有,,,,,,,,共個,從這個素數中任選個,有種可能;其中選取的兩個數,其和等于的有,,共種情況,故隨機選出兩個不同的數,其和等于的概率.故選:.【點睛】本題考查古典概型概率問題的求解,屬于基礎題.10、C【解析】
A:否命題既否條件又否結論,故A錯.B:由正弦定理和邊角關系可判斷B錯.C:可判斷其逆否命題的真假,C正確.D:根據冪函數的性質判斷D錯.【詳解】解:A:“若,則”的否命題是“若,則”,故A錯.B:在中,,故“”是“”成立的必要充分條件,故B錯.C:“若,則”“若,則”,故C正確.D:由冪函數在遞減,故D錯.故選:C【點睛】考查判斷命題的真假,是基礎題.11、D【解析】
構造函數,,利用導數分析出這兩個函數在區間上均為減函數,由得出,分、、三種情況討論,利用放縮法結合函數的單調性推導出或,再利用余弦函數的單調性可得出結論.【詳解】構造函數,,則,,所以,函數、在區間上均為減函數,當時,則,;當時,,.由得.①若,則,即,不合乎題意;②若,則,則,此時,,由于函數在區間上單調遞增,函數在區間上單調遞增,則,;③若,則,則,此時,由于函數在區間上單調遞減,函數在區間上單調遞增,則,.綜上所述,.故選:D.【點睛】本題考查函數單調性的應用,構造新函數是解本題的關鍵,解題時要注意對的取值范圍進行分類討論,考查推理能力,屬于中等題.12、A【解析】
由正弦定理化簡已知等式可得,結合,可得,結合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【點睛】本題主要考查了正弦定理在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意可知:,且,從而可得值.【詳解】由題意可知:∴,即,∴故答案為:【點睛】本題考查二項分布的實際應用,考查分析問題解決問題的能力,考查計算能力,屬于中檔題.14、【解析】分析:可先用向量的數量積公式將原式變形為:,然后再結合余弦定理整理為,再由cosC的余弦定理得到a,b的關系式,最后利用基本不等式求解即可.詳解:已知,可得,將角A,B,C的余弦定理代入得,由,當a=b時取到等號,故cosC的最小值為.點睛:考查向量的數量積、余弦定理、基本不等式的綜合運用,能正確轉化是解題關鍵.屬于中檔題.15、【解析】
寫出二項展開式的通項,然后取的指數為求得的值,則項的系數可求得.【詳解】,由,可得.含項的系數為.故答案為:【點睛】本題考查了二項式定理展開式、需熟記二項式展開式的通項公式,屬于基礎題.16、【解析】
化簡得,利用周期即可求出答案.【詳解】解:,∴函數的最小正周期為6,∴,,故答案為:.【點睛】本題主要考查三角函數的性質的應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(I)詳見解析;(II)2【解析】
(I)求導得到f'(x)=ex-a,討論a≤0(II)f12=e-12a-5【詳解】(I)f(x)=ex-ax當a≤0時,f'(x)=e當a>0時,f'(x)=ex-a=0,x=lna當x∈lna,+∞時,綜上所述:a≤0時,fx在R上單調遞增;a>0時,fx在-∞,ln(II)f(x)=ex-ax-bf12=現在證明存在a,b,a+5b=2e取a=3e4,b=f'(x)=ex-a-故當x∈0,+∞上時,x2+1f'x在x∈0,+∞上單調遞增,故fx在0,12上單調遞減,在1綜上所述:a+5b的最大值為【點睛】本題考查了函數單調性,函數的最值問題,意在考查學生的計算能力和綜合應用能力.18、(1)(2);【解析】
(1),,可得為公比為2的等比數列,可得為公差為1的等差數列,再算出,的通項公式,解方程組即可;(2)利用分組求和法解決.【詳解】(1)依題意有又.可得數列為公比為2的等比數列,為公差為1的等差數列,由,得解得故數列,的通項公式分別為.(2),.【點睛】本題考查利用遞推公式求數列的通項公式以及分組求和法求數列的前n項和,考查學生的計算能力,是一道中檔題.19、(1):,:;(2)【解析】
(1)由直線參數方程消去參數即可得直線的普通方程,根據極坐標方程和直角坐標方程互化的公式即可得曲線的直角坐標方程;(2)由即可得的底,由點到直線的距離的最大值為即可得高的最大值,即可得解.【詳解】(1)由消去參數得直線的普通方程為,由得,曲線的直角坐標方程為;(2)曲線即,圓心到直線的距離,所以,又點到直線的距離的最大值為,所以面積的最大值為.【點睛】本題考查了參數方程、極坐標方程和直角坐標方程的互化,考查了直線與圓的位置關系,屬于中檔題.20、≤x≤【解析】由題知,|x-1|+|x-2|≤恒成立,故|x-1|+|x-2|不大于的最小值.∵|a+b|+|a-b|≥|a+b+a-b|=2|a|,當且僅當(a+b)·(a-b)≥0時取等號,∴的最小值等于2.∴x的范圍即為不等式|x-1|+|x-2|≤2的解,解不等式得≤x≤.21、(1)證明見解析;(2).【解析】
(1)證明后可得平面,從而得,結合已知得線面垂直;(2)以為坐標原點,以為軸,為軸,為建立空間直角坐標系,設,寫出各點坐標,求出二面角的面的法向量,由法向量夾角的余弦值得二面角的余弦值.【詳解】(1)證明:因為,為中點,所以,又,,所以平面,又平面,所以,又,,所以平面.(2)由已知及(1)可知,,兩兩垂直,所以以為坐標原點,以為軸,為軸,為建立空間直角坐標系,設,則,,,,,.設平面的法向量,則,即,令,則;設平面的法向量,則,即,令,則,所以.故
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年政府土地使用權出讓合同(地塊出讓)標準版范文
- 2025合同協議關于續簽房屋租賃合同的報告
- 2025倉庫長期租賃合同范本
- 信息技術咨詢及采購合同參考
- 綠色生態園區停車位租賃與生態環保服務協議
- 餐飲企業信息化建設及運維服務合同
- 房地產開發商如何制定有效的營銷計劃
- 小學三年級教師工作總結
- 江西省考面試題目及答案
- 擊劍選材測試題及答案
- 2024年湖南省長沙市中考英語試卷真題(含答案)
- 九宮數獨200題(附答案全)
- 人教版2024年小升初語文模擬試卷(含答案解析)
- 2024年山東高壓電工題庫電工高級工考試題庫(全國版)
- 內鏡下硬化劑治療護理
- 三公經費違規的主要表現及防范措施
- 高中英語外研版(2019)選擇性必修第一冊各單元主題語境與單元目標
- 游艇運營方案
- 人教版八年級下學期音樂期末考試試卷(含答案)
- 給小學生科普人工智能
- 以青春之名勵青春之志
評論
0/150
提交評論