




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北獅州市2023-2024學年高三六校第一次聯考數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線過雙曲線C:的左焦點F,且與雙曲線C在第二象限交于點A,若(O為坐標原點),則雙曲線C的離心率為A. B. C. D.2.已知等差數列的前13項和為52,則()A.256 B.-256 C.32 D.-323.已知的垂心為,且是的中點,則()A.14 B.12 C.10 D.84.以,為直徑的圓的方程是A. B.C. D.5.已知數列中,,(),則等于()A. B. C. D.26.如圖是來自古希臘數學家希波克拉底所研究的幾何圖形,此圖由三個半圓構成,三個半圓的直徑分別為直角三角形的斜邊,直角邊.已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C. D.7.A. B. C. D.8.設,則(
)A.10 B.11 C.12 D.139.記為等差數列的前項和.若,,則()A.5 B.3 C.-12 D.-1310.已知是雙曲線的左右焦點,過的直線與雙曲線的兩支分別交于兩點(A在右支,B在左支)若為等邊三角形,則雙曲線的離心率為()A. B. C. D.11.已知復數z滿足(i為虛數單位),則z的虛部為()A. B. C.1 D.12.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=0二、填空題:本題共4小題,每小題5分,共20分。13.根據如圖所示的偽代碼,若輸出的的值為,則輸入的的值為_______.14.曲線在點處的切線方程為__.15.在中,內角的對邊分別是,若,,則____.16.已知為橢圓內一定點,經過引一條弦,使此弦被點平分,則此弦所在的直線方程為________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線,過點的直線交拋物線于兩點,坐標原點為,.(1)求拋物線的方程;(2)當以為直徑的圓與軸相切時,求直線的方程.18.(12分)已知等差數列的前n項和為,等比數列的前n項和為,且,,.(1)求數列與的通項公式;(2)求數列的前n項和.19.(12分)已知是公比為的無窮等比數列,其前項和為,滿足,________.是否存在正整數,使得?若存在,求的最小值;若不存在,說明理由.從①,②,③這三個條件中任選一個,補充在上面問題中并作答.20.(12分)在平面直角坐標系中,曲線:(為參數,),曲線:(為參數).若曲線和相切.(1)在以為極點,軸非負半軸為極軸的極坐標系中,求曲線的普通方程;(2)若點,為曲線上兩動點,且滿足,求面積的最大值.21.(12分)如圖,正方形是某城市的一個區域的示意圖,陰影部分為街道,各相鄰的兩紅綠燈之間的距離相等,處為紅綠燈路口,紅綠燈統一設置如下:先直行綠燈30秒,再左轉綠燈30秒,然后是紅燈1分鐘,右轉不受紅綠燈影響,這樣獨立的循環運行.小明上學需沿街道從處騎行到處(不考慮處的紅綠燈),出發時的兩條路線()等可能選擇,且總是走最近路線.(1)請問小明上學的路線有多少種不同可能?(2)在保證通過紅綠燈路口用時最短的前提下,小明優先直行,求小明騎行途中恰好經過處,且全程不等紅綠燈的概率;(3)請你根據每條可能的路線中等紅綠燈的次數的均值,為小明設計一條最佳的上學路線,且應盡量避開哪條路線?22.(10分)已知集合,集合,.(1)求集合B;(2)記,且集合M中有且僅有一個整數,求實數k的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
直線的傾斜角為,易得.設雙曲線C的右焦點為E,可得中,,則,所以雙曲線C的離心率為.故選B.2、A【解析】
利用等差數列的求和公式及等差數列的性質可以求得結果.【詳解】由,,得.選A.【點睛】本題主要考查等差數列的求和公式及等差數列的性質,等差數列的等和性應用能快速求得結果.3、A【解析】
由垂心的性質,得到,可轉化,又即得解.【詳解】因為為的垂心,所以,所以,而,所以,因為是的中點,所以.故選:A【點睛】本題考查了利用向量的線性運算和向量的數量積的運算率,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.4、A【解析】
設圓的標準方程,利用待定系數法一一求出,從而求出圓的方程.【詳解】設圓的標準方程為,由題意得圓心為,的中點,根據中點坐標公式可得,,又,所以圓的標準方程為:,化簡整理得,所以本題答案為A.【點睛】本題考查待定系數法求圓的方程,解題的關鍵是假設圓的標準方程,建立方程組,屬于基礎題.5、A【解析】
分別代值計算可得,觀察可得數列是以3為周期的周期數列,問題得以解決.【詳解】解:∵,(),
,
,
,
,
…,
∴數列是以3為周期的周期數列,
,
,
故選:A.【點睛】本題考查數列的周期性和運用:求數列中的項,考查運算能力,屬于基礎題.6、D【解析】
由半圓面積之比,可求出兩個直角邊的長度之比,從而可知,結合同角三角函數的基本關系,即可求出,由二倍角公式即可求出.【詳解】解:由題意知,以為直徑的半圓面積,以為直徑的半圓面積,則,即.由,得,所以.故選:D.【點睛】本題考查了同角三角函數的基本關系,考查了二倍角公式.本題的關鍵是由面積比求出角的正切值.7、A【解析】
直接利用復數代數形式的乘除運算化簡得答案.【詳解】本題正確選項:【點睛】本題考查復數代數形式的乘除運算,是基礎的計算題.8、B【解析】
根據題中給出的分段函數,只要將問題轉化為求x≥10內的函數值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.【點睛】本題主要考查了分段函數中求函數的值,屬于基礎題.9、B【解析】
由題得,,解得,,計算可得.【詳解】,,,,解得,,.故選:B【點睛】本題主要考查了等差數列的通項公式,前項和公式,考查了學生運算求解能力.10、D【解析】
根據雙曲線的定義可得的邊長為,然后在中應用余弦定理得的等式,從而求得離心率.【詳解】由題意,,又,∴,∴,在中,即,∴.故選:D.【點睛】本題考查求雙曲線的離心率,解題關鍵是應用雙曲線的定義把到兩焦點距離用表示,然后用余弦定理建立關系式.11、D【解析】
根據復數z滿足,利用復數的除法求得,再根據復數的概念求解.【詳解】因為復數z滿足,所以,所以z的虛部為.故選:D.【點睛】本題主要考查復數的概念及運算,還考查了運算求解的能力,屬于基礎題.12、A【解析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點評:本題考查了雙曲線的漸進方程,把雙曲線的標準方程中的“1”轉化成“1”即可求出漸進方程.屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
算法的功能是求的值,根據輸出的值,分別求出當時和當時的值即可得解.【詳解】解:由程序語句知:算法的功能是求的值,當時,,可得:,或(舍去);當時,,可得:(舍去).綜上的值為:.故答案為:.【點睛】本題考查了選擇結構的程序語句,根據語句判斷算法的功能是解題的關鍵,屬于基礎題.14、【解析】
對函數求導后,代入切點的橫坐標得到切線斜率,然后根據直線方程的點斜式,即可寫出切線方程.【詳解】因為,所以,從而切線的斜率,所以切線方程為,即.故答案為:【點睛】本題主要考查過曲線上一點的切線方程的求法,屬基礎題.15、【解析】
由,根據正弦定理“邊化角”,可得,根據余弦定理,結合已知聯立方程組,即可求得角.【詳解】根據正弦定理:可得根據余弦定理:由已知可得:故可聯立方程:解得:.由故答案為:.【點睛】本題主要考查了求三角形的一個內角,解題關鍵是掌握由正弦定理“邊化角”的方法和余弦定理公式,考查了分析能力和計算能力,屬于中檔題.16、【解析】
設弦所在的直線與橢圓相交于、兩點,利用點差法可求得直線的斜率,進而可求得直線的點斜式方程,化為一般式即可.【詳解】設弦所在的直線與橢圓相交于、兩點,由于點為弦的中點,則,得,由題意得,兩式相減得,所以,直線的斜率為,所以,弦所在的直線方程為,即.故答案為:.【點睛】本題考查利用弦的中點求弦所在直線的方程,一般利用點差法,也可以利用韋達定理設而不求法來解答,考查計算能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)或【解析】試題分析:本題主要考查拋物線的標準方程、直線與拋物線的相交問題、直線與圓相切問題等基礎知識,同時考查考生的分析問題解決問題的能力、轉化能力、運算求解能力以及數形結合思想.第一問,設出直線方程與拋物線方程聯立,利用韋達定理得到y1+y2,y1y2,,代入到中解出P的值;第二問,結合第一問的過程,利用兩種方法求出的長,聯立解出m的值,從而得到直線的方程.試題解析:(Ⅰ)設l:x=my-2,代入y2=2px,得y2-2pmy+4p=1.(*)設A(x1,y1),B(x2,y2),則y1+y2=2pm,y1y2=4p,則.因為,所以x1x2+y1y2=12,即4+4p=12,得p=2,拋物線的方程為y2=4x.…5分(Ⅱ)由(Ⅰ)(*)化為y2-4my+2=1.y1+y2=4m,y1y2=2.…6分設AB的中點為M,則|AB|=2xm=x1+x2=m(y1+y2)-4=4m2-4,①又,②由①②得(1+m2)(16m2-32)=(4m2-4)2,解得m2=3,.所以,直線l的方程為,或.…12分考點:拋物線的標準方程、直線與拋物線的相交問題、直線與圓相切問題.18、(1);(2)【解析】
(1)設數列的公差為d,由可得,,由即可解得,故,由,即可解得,進而求得.(2)由(1)得,,利用分組求和及錯位相減法即可求得結果.【詳解】(1)設數列的公差為d,數列的公比為q,由可得,,整理得,即,故,由可得,則,即,故.(2)由(1)得,,,故,所以,數列的前n項和為,設①,則②,②①得,綜上,數列的前n項和為.【點睛】本題考查求等差等比的通項公式,考試分組求和及錯位相減法求數列的和,考查學生的計算能力,難度一般.19、見解析【解析】
選擇①或②或③,求出的值,然后利用等比數列的求和公式可得出關于的不等式,判斷不等式是否存在符合條件的正整數解,在有解的情況下,解出不等式,進而可得出結論.【詳解】選擇①:因為,所以,所以.令,即,,所以使得的正整數的最小值為;選擇②:因為,所以,.因為,所以不存在滿足條件的正整數;選擇③:因為,所以,所以.令,即,整理得.當為偶數時,原不等式無解;當為奇數時,原不等式等價于,所以使得的正整數的最小值為.【點睛】本題考查了等比數列的通項公式求和公式,考查了推理能力與計算能力,屬于中檔題.20、(1);(2)【解析】
(1)消去參數,將圓的參數方程,轉化為普通方程,再由圓心到直線的距離等于半徑,可求得圓的普通方程,最后利用求得圓的極坐標方程.(2)利用圓的參數方程以及輔助角公式,由此求得的面積的表達式,再由三角函數最值的求法,求得三角形面積的最大值.【詳解】(1)由題意得:,:因為曲線和相切,所以,即:;(2)設,所以所以當時,面積最大值為【點睛】本小題主要考查參數方程轉化為普通方程,考查直角坐標方程轉化為極坐標方程,考查利用參數的方法求三角形面積的最值,屬于中檔題.21、(1)6種;(2);(3).【解析】
(1)從4條街中選擇2條橫街即可;(2)小明途中恰好經過處,共有4條路線,即,,,,分別對4條路線進行分析計算概率;(3)分別對小明上學的6條路線進行分析求均值,均值越大的應避免.【詳解】(1)路途中可以看成必須走過2條橫街和2條豎街,即從4條街中選擇2條橫街即可,所以路線總數為條.(2)小明途中恰好經過處,共有4條路線:①當走時,全程不等紅綠燈的概率;②當走時,全程不等紅綠燈的概率;③當走時,全程不等紅綠燈的概率;④當走時,全程不等紅綠燈的概率.所以途中恰好經過處,且全程不等信號燈的概率.(3)設以下第條的路線等信號燈的次數為變量,則①第一條:,則;②第二條:,則;③另外四條路線:;;,則綜上,小明上學的最佳路線為;應盡量避開.【點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 物聯網視角下初中音樂課程創新教學設計與實踐論文
- 初中數學教學中學生解決問題策略的培養研究論文
- 艾瑪克衛生管理制度
- 苗木培植部管理制度
- 茶藝室規章管理制度
- 評估項目的模擬試題及答案解析
- 角同步訓練 人教版七年級數學上冊 (一)
- 角膜病變患者康復期心理干預的效果評估
- 設備維保服務合同(3篇)
- 設施大櫻桃栽培與病蟲害防治百問百答閱讀記錄
- 移液器自校準SOP
- Python入門基礎教程全套課件
- 接觸網工程施工方法及技術措施
- 天津大學年《儀器分析》期末試題B及答案
- 工業紙板(瓦楞紙箱企業)全套管理規章制度匯編(組織架構、崗位職責說明、企業制度)
- 中考揚州歷史復習資料
- 氣候類型及自然帶知識歸納表
- 餐飲銷售技巧八步驟精講PPT課件
- 利川市城市規劃區集體土地上房屋征收補償辦法
- 已頒國家職業技能標準目錄(1055個)
- 壓力容器設計管理制度匯編
評論
0/150
提交評論