2021年遼寧省朝陽市中考數學試卷_第1頁
2021年遼寧省朝陽市中考數學試卷_第2頁
2021年遼寧省朝陽市中考數學試卷_第3頁
2021年遼寧省朝陽市中考數學試卷_第4頁
2021年遼寧省朝陽市中考數學試卷_第5頁
已閱讀5頁,還剩29頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021年遼寧省朝陽市中考數學試卷一、選擇題(本大題共10個小題,每小題3分,共30分。每小題給出的四個選項中,只有一個選項是正確的)1.(3分)在有理數2,﹣3,,0中,最小的數是()A.2 B.﹣3 C. D.02.(3分)如圖所示的幾何體是由6個大小相同的小立方塊搭成的,它的左視圖是()A. B. C. D.3.(3分)下列運算正確的是()A.a3+a3=a6 B.a2?a3=a6 C.(ab)2=ab2 D.(a2)4=a84.(3分)某校開展了以“愛我家鄉”為主題的藝術活動,從九年級5個班收集到的藝術作品數量(單位:件)分別為48,50,47,44,50,則這組數據的中位數是()A.44 B.47 C.48 D.505.(3分)一個不透明的口袋中有4個紅球,6個綠球,這些球除顏色外無其他差別,從口袋中隨機摸出1個球,則摸到綠球的概率是()A. B. C. D.6.(3分)將一副三角尺按如圖所示的位置擺放在直尺上,則∠1的度數為()A.45° B.65° C.75° D.85°7.(3分)不等式﹣4x﹣1≥﹣2x+1的解集,在數軸上表示正確的是()A. B. C. D.8.(3分)如圖,O是坐標原點,點B在x軸上,在△OAB中,AO=AB=5,OB=6,點A在反比例函數y=(k≠0)圖象上,則k的值()A.﹣12 B.﹣15 C.﹣20 D.﹣309.(3分)如圖,在菱形ABCD中,點E,F分別在AB,CD上,且BE=2AE,DF=2CF,點G,H分別是AC的三等分點,則的值為()A. B. C. D.10.(3分)如圖,在正方形ABCD中,AB=4,動點M從點A出發,以每秒1個單位長度的速度沿射線AB運動,同時動點N從點A出發,以每秒2個單位長度的速度沿折線AD→DC→CB運動,當點N運動到點B時,點M,N同時停止運動.設△AMN的面積為y,運動時間為x(s),則下列圖象能大致反映y與x之間函數關系的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.(3分)2020年9月1日以來,教育部組織開展重點地區、重點行業、重點單位、重點群體“校園招聘服務”專場招聘活動,提供就業崗位3420000個,促就業資源精準對接.數據3420000用科學記數法表示為.12.(3分)因式分解:﹣3am2+12an2=.13.(3分)如圖,一塊飛鏢游戲板由大小相等的小等邊三角形構成,向游戲板隨機投擲一枚飛鏢(飛鏢每次都落在游戲板上),則擊中黑色區域的概率是.14.(3分)已知⊙O的半徑是7,AB是⊙O的弦,且AB的長為7,則弦AB所對的圓周角的度數為.15.(3分)如圖,在平面直角坐標系中,點A的坐標為(5,0),點M的坐標為(0,4),過點M作MN∥x軸,點P在射線MN上,若△MAP為等腰三角形,則點P的坐標為.16.(3分)如圖,在矩形ABCD中,AB=1,BC=2,連接AC,過點D作DC1⊥AC于點C1,以C1A,C1D為鄰邊作矩形AA1DC1,連接A1C1,交AD于點O1,過點D作DC2⊥A1C1于點C2,交AC于點M1,以C2A1,C2D為鄰邊作矩形A1A2DC2,連接A2C2,交A1D于點O2,過點D作DC3⊥A2C2于點C3,交A1C1于點M2;以C3A2,C3D為鄰邊作矩形A2A3DC3,連接A3C3,交A2D于點O3,過點D作DC4⊥A3C3于點C4,交A2C2于點M3…若四邊形AO1C2M1的面積為S1,四邊形A1O2C3M2的面積為S2,四邊形A2O3C4M3的面積為S3…四邊形An﹣1OnCn+1Mn的面積為Sn,則Sn=.(結果用含正整數n的式子表示)三、解答題(本大題共9小題,共72分.解答應寫出必要的步驟、文字說明或證明過程)17.(5分)先化簡,再求值:(+1)÷,其中x=tan60°.18.(6分)為了進一步豐富校園文體活動,學校準備購進一批籃球和足球,已知每個籃球的進價比每個足球的進價多25元,用2000元購進籃球的數量是用750元購進足球數量的2倍,求:每個籃球和足球的進價各多少元?19.(7分)“賞中華詩詞,尋文化基因,品文學之美”,某校對全體學生進行了古詩詞知識測試,將成績分為一般、良好、優秀三個等級,從中隨機抽取部分學生的測試成績,根據調查結果繪制成兩幅不完整的統計圖,根據圖中信息,解答下列問題:(1)求本次抽樣調查的人數;(2)在扇形統計圖中,陰影部分對應的扇形圓心角的度數是;(3)將條形統計圖補充完整;(4)該校共有1500名學生,根據抽樣調查的結果,請你估計測試成績達到優秀的學生人數.20.(7分)為了迎接建黨100周年,學校舉辦了“感黨恩?跟黨走”主題社團活動,小穎喜歡的社團有寫作社團、書畫社團、演講社團、舞蹈社團(分別用字母A,B,C,D依次表示這四個社團),并把這四個字母分別寫在四張完全相同的不透明的卡片正面,然后將這四張卡片背面朝上洗勻后放在桌面上.(1)小穎從中隨機抽取一張卡片是舞蹈社團D的概率是;(2)小穎先從中隨機抽取一張卡片,記錄下卡片上的字母不放回,再從剩下的卡片中隨機抽取一張卡片,記錄下卡片上的字母,請用列表法或畫樹狀圖法求出小穎抽取的兩張卡片中有一張是演講社團C的概率.21.(7分)一數學興趣小組去測量一棵周圍有圍欄保護的古樹的高,在G處放置一個小平面鏡,當一位同學站在F點時,恰好在小平面鏡內看到這棵古樹的頂端A的像,此時測得FG=3m,這位同學向古樹方向前進了9m后到達點D,在D處安置一高度為1m的測角儀CD,此時測得樹頂A的仰角為30°,已知這位同學的眼睛與地面的距離EF=1.5m,點B,D,G,F在同一水平直線上,且AB,CD,EF均垂直于BF,求這棵古樹AB的高.(小平面鏡的大小和厚度忽略不計,結果保留根號)22.(8分)如圖,AB是⊙O的直徑,點D在⊙O上,且∠AOD=90°,點C是⊙O外一點,分別連接CA,CB、CD,CA交⊙O于點M,交OD于點N,CB的延長線交⊙O于點E,連接AD,ME,且∠ACD=∠E.(1)求證:CD是⊙O的切線;(2)連接DM,若⊙O的半徑為6,tanE=,求DM的長.23.(10分)某商場以每件20元的價格購進一種商品,規定這種商品每件售價不低于進價,又不高于38元,經市場調查發現:該商品每天的銷售量y(件)與每件售價x(元)之間符合一次函數關系,如圖所示.(1)求y與x之間的函數關系式;(2)該商場銷售這種商品要想每天獲得600元的利潤,每件商品的售價應定為多少元?(3)設商場銷售這種商品每天獲利w(元),當每件商品的售價定為多少元時,每天銷售利潤最大?最大利潤是多少?24.(10分)如圖,在Rt△ABC中,AC=BC,∠ACB=90°,點O在線段AB上(點O不與點A,B重合),且OB=kOA,點M是AC延長線上的一點,作射線OM,將射線OM繞點O逆時針旋轉90°,交射線CB于點N.(1)如圖1,當k=1時,判斷線段OM與ON的數量關系,并說明理由;(2)如圖2,當k>1時,判斷線段OM與ON的數量關系(用含k的式子表示),并證明;(3)點P在射線BC上,若∠BON=15°,PN=kAM(k≠1),且<,請直接寫出的值(用含k的式子表示).25.(12分)如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+c與x軸分別交于點A(﹣1,0)和點B,與y軸交于點C(0,3).(1)求拋物線的解析式及對稱軸;(2)如圖1,點D與點C關于對稱軸對稱,點P在對稱軸上,若∠BPD=90°,求點P的坐標;(3)點M是拋物線上位于對稱軸右側的點,點N在拋物線的對稱軸上,當△BMN為等邊三角形時,請直接寫出點M的橫坐標.

2021年遼寧省朝陽市中考數學試卷參考答案與試題解析一、選擇題(本大題共10個小題,每小題3分,共30分。每小題給出的四個選項中,只有一個選項是正確的)1.(3分)在有理數2,﹣3,,0中,最小的數是()A.2 B.﹣3 C. D.0【分析】正數都大于0,負數都小于0,正數大于一切負數.依此即可求解.【解答】解:∵﹣3<0<<2,∴在有理數2,﹣3,,0中,最小的數是﹣3.故選:B.【點評】本題考查了有理數大小比較,有理數大小比較的法則:①正數都大于0;②負數都小于0;③正數大于一切負數;④兩個負數,絕對值大的其值反而?。?.(3分)如圖所示的幾何體是由6個大小相同的小立方塊搭成的,它的左視圖是()A. B. C. D.【分析】根據左視圖是從左邊看所得到的圖形,可直接得到答案.【解答】解:從左邊看,底層是兩個小正方形,上層的左邊是一個小正方形,故選:A.【點評】本題考查了三視圖的知識,注意所有的看到的棱都應表現在左視圖中.3.(3分)下列運算正確的是()A.a3+a3=a6 B.a2?a3=a6 C.(ab)2=ab2 D.(a2)4=a8【分析】先根據合并同類項法則,同底數冪的乘法,積的乘方和冪的乘方求出每個式子的值,再得出選項即可.【解答】解:A.a3+a3=2a3,故本選項不符合題意;B.a2?a3=a5,故本選項不符合題意;C.(ab)2=a2b2,故本選項不符合題意;D.(a2)4=a8,故本選項符合題意;故選:D.【點評】本題考查了合并同類項法則,同底數冪的乘法,積的乘方和冪的乘方等知識點,能熟記合并同類項法則、同底數冪的乘法法則,積的乘方和冪的乘方的內容是解此題的關鍵.4.(3分)某校開展了以“愛我家鄉”為主題的藝術活動,從九年級5個班收集到的藝術作品數量(單位:件)分別為48,50,47,44,50,則這組數據的中位數是()A.44 B.47 C.48 D.50【分析】根據中位數的意義,排序后處在中間位置的數即可.【解答】解:將這五個數據從小到大排列后處在第3位的數是48,因此中位數是48;故選:C.【點評】本題考查中位數的意義,將一組數據從小到大排列后處在中間位置的一個數或兩個數的平均數是中位數.5.(3分)一個不透明的口袋中有4個紅球,6個綠球,這些球除顏色外無其他差別,從口袋中隨機摸出1個球,則摸到綠球的概率是()A. B. C. D.【分析】先求出總的球的個數,再根據概率公式即可得出摸到綠球的概率.【解答】解:∵袋中裝有4個紅球,6個綠球,∴共有10個球,∴摸到綠球的概率為:=;故選:D.【點評】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.6.(3分)將一副三角尺按如圖所示的位置擺放在直尺上,則∠1的度數為()A.45° B.65° C.75° D.85°【分析】由平角等于180°結合三角板各角的度數,可求出∠2的度數,由直尺的上下兩邊平行,利用“兩直線平行,同位角相等”可得出∠1的度數.【解答】解:∵∠2+60°+45°=180°,∴∠2=75°.∵直尺的上下兩邊平行,∴∠1=∠2=75°.故選:C.【點評】本題考查了平行線的性質,牢記“兩直線平行,同位角相等”是解題的關鍵.7.(3分)不等式﹣4x﹣1≥﹣2x+1的解集,在數軸上表示正確的是()A. B. C. D.【分析】不等式移項,合并,把x系數化為1,求出解集,表示在數軸上即可.【解答】解:不等式﹣4x﹣1≥﹣2x+1,移項得:﹣4x+2x≥1+1,合并得:﹣2x≥2,解得:x≤﹣1,數軸表示,如圖所示:故選:D.【點評】此題考查了解一元一次不等式,以及在數軸上表示不等式的解集,熟練掌握不等式的解法是解本題的關鍵.8.(3分)如圖,O是坐標原點,點B在x軸上,在△OAB中,AO=AB=5,OB=6,點A在反比例函數y=(k≠0)圖象上,則k的值()A.﹣12 B.﹣15 C.﹣20 D.﹣30【分析】過A點作AC⊥OB,利用等腰三角形的性質求出點A的坐標即可解決問題.【解答】解:過A點作AC⊥OB,∵AO=AB,AC⊥OB,OB=6,∴OC=BC=3,在Rt△AOC中,OA=5,∵AC=,∴A(﹣3,4),把A(﹣3,4)代入y=,可得k=﹣12,故選:A.【點評】本題考查反比例函數圖象上的點的性質,等腰三角形的性質,勾股定理等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.9.(3分)如圖,在菱形ABCD中,點E,F分別在AB,CD上,且BE=2AE,DF=2CF,點G,H分別是AC的三等分點,則的值為()A. B. C. D.【分析】由題意可證EG∥BC,HF∥AD,根據比例式即可求解.【解答】解:∵BE=2AE,DF=2FC,∴,∵G、H分別是AC的三等分點,∴,,∴,∴EG∥BC∴,同理可得HF∥AD,,∴,故選:A.【點評】本題考查了菱形的性質,由題意可證EG∥BC,HF∥AD是本題的關鍵.10.(3分)如圖,在正方形ABCD中,AB=4,動點M從點A出發,以每秒1個單位長度的速度沿射線AB運動,同時動點N從點A出發,以每秒2個單位長度的速度沿折線AD→DC→CB運動,當點N運動到點B時,點M,N同時停止運動.設△AMN的面積為y,運動時間為x(s),則下列圖象能大致反映y與x之間函數關系的是()A. B. C. D.【分析】根據點N的運動情況,分點N在AD,DC,CB上三種情況討論,分別寫出每種情況y和x之間的函數關系式,即可確定圖象.【解答】解:當點N在AD上時,即0<x<2∵AM=x,AN=2x,∴,此時二次項系數大于0,∴該部分函數圖象開口向上,當點N在DC上時,即2≤x<4,此時底邊AM=x,高AD=4,∴y==2x,∴該部分圖象為直線段,當點N在CB上時,即4≤x<6時,此時底邊AM=x,高BN=12﹣2x,∴y=,∵﹣1<0,∴該部分函數圖象開口向下,故選:B.【點評】本題是運動型綜合題,考查了動點問題的函數圖象、正方形的性質、三角形的面積等知識點.解題關鍵是深刻理解動點的函數圖象,了解圖象中關鍵點所代表的實際意義,理解動點的完整運動過程.二、填空題(本大題共6個小題,每小題3分,共18分)11.(3分)2020年9月1日以來,教育部組織開展重點地區、重點行業、重點單位、重點群體“校園招聘服務”專場招聘活動,提供就業崗位3420000個,促就業資源精準對接.數據3420000用科學記數法表示為3.42×106.【分析】科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值大于或等于10時,n是正整數;當原數的絕對值小于1時,n是負整數.【解答】解:數據3420000用科學記數法表示為3.42×106.故答案為:3.42×106.【點評】此題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.12.(3分)因式分解:﹣3am2+12an2=﹣3a(m+2n)(m﹣2n).【分析】直接提取公因式﹣3a,再利用平方差公式分解因式得出答案.【解答】解:原式=﹣3a(m2﹣4n2)=﹣3a(m+2n)(m﹣2n).故答案為:﹣3a(m+2n)(m﹣2n).【點評】此題主要考查了提取公因式法以及公式法分解因式,正確運用乘法公式分解因式是解題關鍵.13.(3分)如圖,一塊飛鏢游戲板由大小相等的小等邊三角形構成,向游戲板隨機投擲一枚飛鏢(飛鏢每次都落在游戲板上),則擊中黑色區域的概率是.【分析】根據幾何概率的求法:飛鏢落在陰影部分的概率就是黑色區域的面積與總面積的比值.【解答】解:∵總面積為9個小三角形的面積,其中黑色部分面積為3個小三角形的面積,∴飛鏢落在黑色部分的概率是=,故答案為:.【點評】本題考查幾何概率的求法:首先根據題意將代數關系用面積表示出來,一般用陰影區域表示所求事件(A);然后計算陰影區域的面積在總面積中占的比例,這個比例即事件(A)發生的概率.14.(3分)已知⊙O的半徑是7,AB是⊙O的弦,且AB的長為7,則弦AB所對的圓周角的度數為60°或120°.【分析】∠ACB和∠ADB為弦AB所對的圓周角,連接OA、OB,如圖,過O點作OH⊥AB于H,根據垂徑定理得到AH=BH=,則利用余弦的定義可求出∠OAH=30°,所以∠AOB=120°,然后根據圓周角定理得到∠ACB=60°,根據圓內接四邊形的性質得到∠ADB=120°.【解答】解:∠ACB和∠ADB為弦AB所對的圓周角,連接OA、OB,如圖,過O點作OH⊥AB于H,則AH=BH=AB=,在Rt△OAH中,∵cos∠OAH===,∴∠OAH=30°,∵OA=OB,∴∠OBH=∠OAH=30°,∴∠AOB=120°,∴∠ACB=∠AOB=60°,∵∠ADB+∠ACB=180°,∴∠ADB=180°﹣60°=120°,即弦AB所對的圓周角的度數為60°或120°.故答案為60°或120°.【點評】本題考查了圓周角定理:同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了垂徑定理.15.(3分)如圖,在平面直角坐標系中,點A的坐標為(5,0),點M的坐標為(0,4),過點M作MN∥x軸,點P在射線MN上,若△MAP為等腰三角形,則點P的坐標為(,4)或(,4)或(10,4).【分析】分三種情況:①PM=PA,②MP=MA,③AM=AP,分別畫圖,根據等腰三角形的性質和兩點的距離公式,即可求解.【解答】解:設點P的坐標為(x,4),分三種情況:①PM=PA,∵點A的坐標為(5,0),點M的坐標為(0,4),∴PM=x,PA=,∵PM=PA,∴x=,解得:x=,∴點P的坐標為(,4);②MP=MA,∵點A的坐標為(5,0),點M的坐標為(0,4),∴MP=x,MA==,∵MP=MA,∴x=,∴點P的坐標為(,4);③AM=AP,∵點A的坐標為(5,0),點M的坐標為(0,4),∴AP=,MA==,∵AM=AP,∴=,解得:x1=10,x2=0(舍去),∴點P的坐標為(10,4);綜上,點P的坐標為(,4)或(,4)或(10,4).故答案為:(,4)或(,4)或(10,4).【點評】本題考查了等腰三角形的性質和坐標與圖形的性質,熟練掌握坐標與圖形特征,利用坐標特征和勾股定理求線段的長是解題的關鍵.16.(3分)如圖,在矩形ABCD中,AB=1,BC=2,連接AC,過點D作DC1⊥AC于點C1,以C1A,C1D為鄰邊作矩形AA1DC1,連接A1C1,交AD于點O1,過點D作DC2⊥A1C1于點C2,交AC于點M1,以C2A1,C2D為鄰邊作矩形A1A2DC2,連接A2C2,交A1D于點O2,過點D作DC3⊥A2C2于點C3,交A1C1于點M2;以C3A2,C3D為鄰邊作矩形A2A3DC3,連接A3C3,交A2D于點O3,過點D作DC4⊥A3C3于點C4,交A2C2于點M3…若四邊形AO1C2M1的面積為S1,四邊形A1O2C3M2的面積為S2,四邊形A2O3C4M3的面積為S3…四邊形An﹣1OnCn+1Mn的面積為Sn,則Sn=.(結果用含正整數n的式子表示)【分析】根據四邊形ABCD是矩形,可得AC=,運用面積法可得DC1==,進而得出D?n=()n,得出S1=,……,Sn==×=.【解答】解:∵四邊形ABCD是矩形,∴∠B=90°,AD∥BC,AD=BC=2,CD=AB=1,∴AC===,∵DC1?AC=AB?BC,∴DC1===,同理,DC2=DC1=()2,DC3=()3,……,D?n=()n,∵=tan∠ACD==2,∴CC1=DC1=,∵tan∠CAD===,∴A1D=AC1=2DC1=,∴AM1=AC1﹣C1M1=2DC1﹣DC1=×DC1=,同理,A1M2=×DC2,A2M3=×DC3,……,An﹣1Mn=×D?n,∵四邊形AA1DC1是矩形,∴O1A=O1D=O1A1=O1C1=1,同理∵DC2?A1C1=A1D?DC1,∴DC2===,在Rt△DOC中,O1C2====DC2,同理,O2C3=DC3,O3C4=DC4,……,OnCn+1=DCn+1,∴S1==﹣=×AM1×DC1﹣×O1C2×DC2=(﹣)==,同理,S2=﹣==×=,S3==×=,……,Sn==×=.故答案為:.【點評】本題考查了矩形性質,勾股定理,解直角三角形,三角形面積等,解題關鍵是通過計算找出規律.三、解答題(本大題共9小題,共72分.解答應寫出必要的步驟、文字說明或證明過程)17.(5分)先化簡,再求值:(+1)÷,其中x=tan60°.【分析】先把括號內的分式通分,再把各分子和分母因式分解,然后進行約分化簡,代入求值即可.【解答】解:原式=÷=×=.x=tan60°=,代入得:原式==1+.【點評】本題考查了分式的化簡求值,在化簡的過程中要注意運算順序和分式的化簡.化簡的最后結果分子、分母要進行約分,注意運算的結果要化成最簡分式或整式.18.(6分)為了進一步豐富校園文體活動,學校準備購進一批籃球和足球,已知每個籃球的進價比每個足球的進價多25元,用2000元購進籃球的數量是用750元購進足球數量的2倍,求:每個籃球和足球的進價各多少元?【分析】設每個足球的進價是x元,則每個籃球的進價是(x+25)元,利用數量=總價÷單價,結合用2000元購進籃球的數量是用750元購進足球數量的2倍,即可得出關于x的分式方程,解之經檢驗后即可得出足球的單價,再將其代入(x+25)中即可求出籃球的單價.【解答】解:設每個足球的進價是x元,則每個籃球的進價是(x+25)元,依題意得:=2×,解得:x=75,經檢驗,x=75是原方程的解,且符合題意,∴x+25=75+25=100.答:每個足球的進價是75元,每個籃球的進價是100元.【點評】本題考查了分式方程的應用,找準等量關系,正確列出分式方程是解題的關鍵.19.(7分)“賞中華詩詞,尋文化基因,品文學之美”,某校對全體學生進行了古詩詞知識測試,將成績分為一般、良好、優秀三個等級,從中隨機抽取部分學生的測試成績,根據調查結果繪制成兩幅不完整的統計圖,根據圖中信息,解答下列問題:(1)求本次抽樣調查的人數;(2)在扇形統計圖中,陰影部分對應的扇形圓心角的度數是90°;(3)將條形統計圖補充完整;(4)該校共有1500名學生,根據抽樣調查的結果,請你估計測試成績達到優秀的學生人數.【分析】(1)由良好的人數除以占的百分比求本次抽樣調查的人數;(2)根據一般的人數所占百分比即可求出圓心角的度數;(3)求出優秀的人數即可畫出條形圖;(4)求出優秀占的百分比,乘以1500即可得到結果.【解答】解:(1)總人數=50÷=120(人);(2)陰影部分扇形的圓心角=360°×=90°,故答案為:90°;(3)優秀的人數為:120﹣30﹣50=40(人),條形統計圖如圖所示:(4)測試成績達到優秀的學生人數有:1500×=500(人),答:該校1500名學生中測試成績達到優秀的學生大約有500人.【點評】本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.20.(7分)為了迎接建黨100周年,學校舉辦了“感黨恩?跟黨走”主題社團活動,小穎喜歡的社團有寫作社團、書畫社團、演講社團、舞蹈社團(分別用字母A,B,C,D依次表示這四個社團),并把這四個字母分別寫在四張完全相同的不透明的卡片正面,然后將這四張卡片背面朝上洗勻后放在桌面上.(1)小穎從中隨機抽取一張卡片是舞蹈社團D的概率是;(2)小穎先從中隨機抽取一張卡片,記錄下卡片上的字母不放回,再從剩下的卡片中隨機抽取一張卡片,記錄下卡片上的字母,請用列表法或畫樹狀圖法求出小穎抽取的兩張卡片中有一張是演講社團C的概率.【分析】(1)共有4種可能出現的結果,其中是舞蹈社團D的有一種,即可求出概率;(2)用列表法列舉出所有可能出現的結果,從中找出一張是演講社團C的結果數,進而求出概率.【解答】解:(1)∵共有4種可能出現的結果,其中是舞蹈社團D的有1種,∴小穎從中隨機抽取一張卡片是舞蹈社團D的概率是,故答案為:;(2)用列表法表示所有可能出現的結果如下:共有12種可能出現的結果,每種結果出現的可能性相同,其中有一張是演講社團C的有6種,∴小穎抽取的兩張卡片中有一張是演講社團C的概率是=.【點評】本題考查了用列表法或樹狀圖法求概率,正確畫出樹狀圖或表格是解決本題的關鍵.21.(7分)一數學興趣小組去測量一棵周圍有圍欄保護的古樹的高,在G處放置一個小平面鏡,當一位同學站在F點時,恰好在小平面鏡內看到這棵古樹的頂端A的像,此時測得FG=3m,這位同學向古樹方向前進了9m后到達點D,在D處安置一高度為1m的測角儀CD,此時測得樹頂A的仰角為30°,已知這位同學的眼睛與地面的距離EF=1.5m,點B,D,G,F在同一水平直線上,且AB,CD,EF均垂直于BF,求這棵古樹AB的高.(小平面鏡的大小和厚度忽略不計,結果保留根號)【分析】過點C作CH⊥AB于點H,則CH=BD,BH=CD=1m,由銳角三角函數定義求出BD=CH=AH,再證△EFG∽△ABG,得=,求出AH=(8+4)m,即可求解.【解答】解:如圖,過點C作CH⊥AB于點H,則CH=BD,BH=CD=1m,由題意得:DF=9m,∴DG=DF﹣FG=6(m),在Rt△ACH中,∠ACH=30°,∵tan∠ACH==tan30°=,∴BD=CH=AH,∵EF⊥FB,AB⊥FB,∴∠EFG=∠ABG=90°.由反射角等于入射角得∠EGF=∠AGB,∴△EFG∽△ABG,∴=,即=,解得:AH=(8+4)m,∴AB=AH+BH=(9+4)m,即這棵古樹的高AB為(9+4)m.【點評】本題考查了解直角三角形的應用﹣仰角俯角問題,相似三角形的應用等知識,正確作出輔助線構造直角三角形,證明△EFG∽△ABG是解題的關鍵.22.(8分)如圖,AB是⊙O的直徑,點D在⊙O上,且∠AOD=90°,點C是⊙O外一點,分別連接CA,CB、CD,CA交⊙O于點M,交OD于點N,CB的延長線交⊙O于點E,連接AD,ME,且∠ACD=∠E.(1)求證:CD是⊙O的切線;(2)連接DM,若⊙O的半徑為6,tanE=,求DM的長.【分析】(1)根據圓周角定理和等量代換可得∠BAC=∠ACD,進而得出AB∥CD,由∠AOD=90°可得OD⊥CD,從得出結論;(2)由tanE=,可得tan∠ACD=tan∠OAN=tanE=,在直角三角形中由銳角三角函數可求出ON、DN、CD,由勾股定理求出CN,由三角形的面積公式求出DF,再根據圓周角定理可求出∠AMD=45°,進而根據等腰直角三角形的邊角關系求出DM即可.【解答】解:(1)∵∠ACD=∠E,∠E=∠BAC,∴∠BAC=∠ACD,∴AB∥CD,∴∠ODC=∠AOD=90°,即OD⊥CD,∴CD是⊙O的切線;(2)過點D作DF⊥AC于F,∵⊙O的半徑為6,tanE==tan∠ACD=tan∠OAN,∴ON=OA=×6=2,∴DN=OD﹣ON=6﹣2=4,∴CD=3DN=12,在Rt△CDN中,CN===4,由三角形的面積公式可得,CN?DF=DN?CD,即4DF=4×12,∴DF=,又∵∠AMD=∠AOD=×90°=45°,在Rt△DFM中,DM=DF=×=.【點評】本題考查切線的判定和性質,直角三角形的邊角關系,理解銳角三角函數以及勾股定理是解決問題的前提.23.(10分)某商場以每件20元的價格購進一種商品,規定這種商品每件售價不低于進價,又不高于38元,經市場調查發現:該商品每天的銷售量y(件)與每件售價x(元)之間符合一次函數關系,如圖所示.(1)求y與x之間的函數關系式;(2)該商場銷售這種商品要想每天獲得600元的利潤,每件商品的售價應定為多少元?(3)設商場銷售這種商品每天獲利w(元),當每件商品的售價定為多少元時,每天銷售利潤最大?最大利潤是多少?【分析】(1)利用待定系數法求解即可;(2)根據“每件利潤×銷售量=總利潤”列出一元二次方程,解之可得;(3)根據以上相等關系列出函數解析式,配方成頂點式,利用二次函數性質求解可得.【解答】解:(1)設y與x之間的函數關系式為y=kx+b(k≠0),由所給函數圖象可知:,解得,故y與x的函數關系式為y=﹣2x+120;(2)根據題意,得:(x﹣20)(﹣2x+120)=600,整理,得:x2﹣80x+1500=0,解得:x=30或x=50(不合題意,舍去),答:每件商品的銷售價應定為30元;(3)∵y=﹣2x+120,∴w=(x﹣20)y=(x﹣20)(﹣2x+120)=﹣2x2+160x﹣2400=﹣2(x﹣40)2+800,∵x≤38∴當x=38時,w最大=792,∴售價定為38元/件時,每天最大利潤w=792元.【點評】本題主要考查一次函數的應用以及二次函數的應用,解題的關鍵是掌握待定系數法求函數解析式,理解題意確定相等關系,并據此列出函數解析式.24.(10分)如圖,在Rt△ABC中,AC=BC,∠ACB=90°,點O在線段AB上(點O不與點A,B重合),且OB=kOA,點M是AC延長線上的一點,作射線OM,將射線OM繞點O逆時針旋轉90°,交射線CB于點N.(1)如圖1,當k=1時,判斷線段OM與ON的數量關系,并說明理由;(2)如圖2,當k>1時,判斷線段OM與ON的數量關系(用含k的式子表示),并證明;(3)點P在射線BC上,若∠BON=15°,PN=kAM(k≠1),且<,請直接寫出的值(用含k的式子表示).【分析】(1)作OD⊥AM,OE⊥BC,證明△DOM≌△EON;(2)作OD⊥AM,OE⊥BC,證明△DOM∽△EON;(3)解Rt△EON和斜△AOM.【解答】解:(1)OM=ON,如圖1,作OD⊥AM于D,OE⊥CB于E,∴∠ADO=∠MDO=∠CEO=∠OEN=90°,∴∠DOE=90°,∵AC=BC,∠ACB=90°,∴∠A=∠ABC=45°,在Rt△AOD中,OD=OA.sin∠A=OA.sin45°=OA,同理:OE=OB,∵OA=OB,∴OD=OE,∵∠DOE=90°,∴∠DOM+∠MOE=90°,∵∠MON=90°,∴∠EON+∠MOE=90°,∴∠DOM=∠EON,在Rt△DOM和Rt△EON中,,∴△DOM≌△EON(ASA),∴OM=ON.(2)如圖2,作OD⊥AM于D,OE⊥BC于E,由(1)知:OD=OA,OE=OB,∴==,由(1)知:∠DOM=∠EON,∠MDO=∠NEO=90°,∴△DOM∽△EON,∴==,∴ON=k?OM.(3)如圖3,設AC=BC=a,∴AB=a,∵OB=k?OA,∴OB=?a,OA=?a,∴OE=OB=a,∵∠N=∠ABC﹣∠BON=45°﹣15°=30°,∴EN==OE=?a,∵CE=OD=OA=a,∴NC=CE+EN=a+?a,由(2)知:==,△DOM∽△EON,∴∠M=∠N∵=,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論