安徽省壽縣重點達標名校2024屆中考二模數學試題含解析_第1頁
安徽省壽縣重點達標名校2024屆中考二模數學試題含解析_第2頁
安徽省壽縣重點達標名校2024屆中考二模數學試題含解析_第3頁
安徽省壽縣重點達標名校2024屆中考二模數學試題含解析_第4頁
安徽省壽縣重點達標名校2024屆中考二模數學試題含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省壽縣重點達標名校2024屆中考二模數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知一組數據1、2、3、x、5,它們的平均數是3,則這一組數據的方差為()A.1 B.2 C.3 D.42.某車間20名工人日加工零件數如表所示:日加工零件數45678人數26543這些工人日加工零件數的眾數、中位數、平均數分別是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、63.長度單位1納米=10A.25.1×10-6米B.C.2.51×105米D.4.已知x1,x2是關于x的方程x2+ax-2b=0的兩個實數根,且x1+x2=-2,x1·x2=1,則ba的值是()A.14 B.-15.如圖由四個相同的小立方體組成的立體圖像,它的主視圖是().A. B. C. D.6.如圖,二次函數y=ax1+bx+c(a≠0)的圖象與x軸正半軸相交于A、B兩點,與y軸相交于點C,對稱軸為直線x=1,且OA=OC.則下列結論:①abc>0;②9a+3b+c>0;③c>﹣1;④關于x的方程ax1+bx+c=0(a≠0)有一個根為﹣;⑤拋物線上有兩點P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,則y1>y1.其中正確的結論有()A.1個 B.3個 C.4個 D.5個7.有兩組數據,A組數據為2、3、4、5、6;B組數據為1、7、3、0、9,這兩組數據的()A.中位數相等B.平均數不同C.A組數據方差更大D.B組數據方差更大8.已知,代數式的值為()A.-11 B.-1 C.1 D.119.如圖,在△ABC中,DE∥BC交AB于D,交AC于E,錯誤的結論是(

).A. B. C. D.10.下列說法不正確的是()A.選舉中,人們通常最關心的數據是眾數B.從1,2,3,4,5中隨機抽取一個數,取得奇數的可能性比較大C.甲、乙兩人在相同條件下各射擊10次,他們的平均成績相同,方差分別為S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩定D.數據3,5,4,1,﹣2的中位數是411.正五邊形繞著它的中心旋轉后與它本身重合,最小的旋轉角度數是()A.36° B.54° C.72° D.108°12.已知A、B兩地之間鐵路長為450千米,動車比火車每小時多行駛50千米,從A市到B市乘動車比乘火車少用40分鐘,設動車速度為每小時x千米,則可列方程為()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.函數中,自變量的取值范圍是______14.如圖,在平面直角坐標系xOy中,△DEF可以看作是△ABC經過若干次圖形的變化(平移、軸對稱、旋轉)得到的,寫出一種由△ABC得到△DEF的過程:_____.15.已知,大正方形的邊長為4厘米,小正方形的邊長為2厘米,起始狀態如圖所示,大正方形固定不動,把小正方形向右平移,當兩個正方形重疊部分的面積為2平方厘米時,小正方形平移的距離為_____厘米.16.我國自主研發的某型號手機處理器采用10nm工藝,已知1nm=0.000000001m,則10nm用科學記數法可表示為_____m.17.若a,b互為相反數,則a2﹣b2=_____.18.小明用一個半徑為30cm且圓心角為240°的扇形紙片做成一個圓錐形紙帽(粘合部分忽略不計),那么這個圓錐形紙帽的底面半徑為_____cm.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AC是⊙O的直徑,PA切⊙O于點A,點B是⊙O上的一點,且∠BAC=30°,∠APB=60°.(1)求證:PB是⊙O的切線;(2)若⊙O的半徑為2,求弦AB及PA,PB的長.20.(6分)某校為選拔一名選手參加“美麗邵陽,我為家鄉做代言”主題演講比賽,經研究,按圖所示的項目和權數對選拔賽參賽選手進行考評(因排版原因統計圖不完整).下表是李明、張華在選拔賽中的得分情況:項目選手服裝普通話主題演講技巧李明85708085張華90757580結合以上信息,回答下列問題:求服裝項目的權數及普通話項目對應扇形的圓心角大小;求李明在選拔賽中四個項目所得分數的眾數和中位數;根據你所學的知識,幫助學校在李明、張華兩人中選擇一人參加“美麗邵陽,我為家鄉做代言”主題演講比賽,并說明理由.21.(6分)如圖,AB為⊙O的直徑,D為⊙O上一點,以AD為斜邊作△ADC,使∠C=90°,∠CAD=∠DAB求證:DC是⊙O的切線;若AB=9,AD=6,求DC的長.22.(8分)如圖,已知二次函數的圖象與軸交于,兩點在左側),與軸交于點,頂點為.(1)當時,求四邊形的面積;(2)在(1)的條件下,在第二象限拋物線對稱軸左側上存在一點,使,求點的坐標;(3)如圖2,將(1)中拋物線沿直線向斜上方向平移個單位時,點為線段上一動點,軸交新拋物線于點,延長至,且,若的外角平分線交點在新拋物線上,求點坐標.23.(8分)如圖,在平面直角坐標系xOy中,每個小正方形的邊長都為1,和的頂點都在格點上,回答下列問題:可以看作是經過若干次圖形的變化平移、軸對稱、旋轉得到的,寫出一種由得到的過程:______;畫出繞點B逆時針旋轉的圖形;在中,點C所形成的路徑的長度為______.24.(10分)如圖,,,,求證:。25.(10分)“大美濕地,水韻鹽城”.某校數學興趣小組就“最想去的鹽城市旅游景點”隨機調查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的景點,下面是根據調查結果進行數據整理后繪制出的不完整的統計圖:請根據圖中提供的信息,解答下列問題:(1)求被調查的學生總人數;(2)補全條形統計圖,并求扇形統計圖中表示“最想去景點D”的扇形圓心角的度數;(3)若該校共有800名學生,請估計“最想去景點B“的學生人數.26.(12分)如圖1,在矩形ABCD中,AD=4,AB=2,將矩形ABCD繞點A逆時針旋轉α(0<α<90°)得到矩形AEFG.延長CB與EF交于點H.(1)求證:BH=EH;(2)如圖2,當點G落在線段BC上時,求點B經過的路徑長.27.(12分)某市為了解本地七年級學生寒假期間參加社會實踐活動情況,隨機抽查了部分七年級學生寒假參加社會實踐活動的天數(“A﹣﹣﹣不超過5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并將得到的數據繪制成如下兩幅不完整的統計圖.請根據以上的信息,回答下列問題:(1)補全扇形統計圖和條形統計圖;(2)所抽查學生參加社會實踐活動天數的眾數是(選填:A、B、C、D、E);(3)若該市七年級約有2000名學生,請你估計參加社會實踐“活動天數不少于7天”的學生大約有多少人?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

先由平均數是3可得x的值,再結合方差公式計算.【詳解】∵數據1、2、3、x、5的平均數是3,∴=3,解得:x=4,則數據為1、2、3、4、5,∴方差為×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,故選B.【點睛】本題主要考查算術平均數和方差,解題的關鍵是熟練掌握平均數和方差的定義.2、D【解析】

5出現了6次,出現的次數最多,則眾數是5;把這些數從小到大排列,中位數是第10,11個數的平均數,則中位數是(6+6)÷2=6;平均數是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案選D.3、D【解析】先將25100用科學記數法表示為2.51×104,再和10-9相乘,等于2.51×10-5米.故選D4、A【解析】

根據根與系數的關系和已知x1+x2和x1?x2的值,可求a、b的值,再代入求值即可.【詳解】解:∵x1,x2是關于x的方程x2+ax﹣2b=0的兩實數根,∴x1+x2=﹣a=﹣2,x1?x2=﹣2b=1,解得a=2,b=-1∴ba=(-12)2=故選A.5、D【解析】從正面看,共2列,左邊是1個正方形,右邊是2個正方形,且下齊.故選D.6、D【解析】

根據拋物線的圖象與系數的關系即可求出答案.【詳解】解:由拋物線的開口可知:a<0,由拋物線與y軸的交點可知:c<0,由拋物線的對稱軸可知:>0,∴b>0,∴abc>0,故①正確;令x=3,y>0,∴9a+3b+c>0,故②正確;∵OA=OC<1,∴c>﹣1,故③正確;∵對稱軸為直線x=1,∴﹣=1,∴b=﹣4a.∵OA=OC=﹣c,∴當x=﹣c時,y=0,∴ac1﹣bc+c=0,∴ac﹣b+1=0,∴ac+4a+1=0,∴c=,∴設關于x的方程ax1+bx+c=0(a≠0)有一個根為x,∴x﹣c=4,∴x=c+4=,故④正確;∵x1<1<x1,∴P、Q兩點分布在對稱軸的兩側,∵1﹣x1﹣(x1﹣1)=1﹣x1﹣x1+1=4﹣(x1+x1)<0,即x1到對稱軸的距離小于x1到對稱軸的距離,∴y1>y1,故⑤正確.故選D.【點睛】本題考查的是二次函數圖象與系數的關系,二次函數y=ax1+bx+c系數符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數確定.本題屬于中等題型.7、D【解析】

分別求出兩組數據的中位數、平均數、方差,比較即可得出答案.【詳解】A組數據的中位數是:4,平均數是:(2+3+4+5+6)÷5=4,方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2]÷5=2;B組數據的中位數是:3,平均數是:(1+7+3+0+9)÷5=4,方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2]÷5=12;∴兩組數據的中位數不相等,平均數相等,B組方差更大.故選D.【點睛】本題考查了中位數、平均數、方差的計算,熟練掌握中位數、平均數、方差的計算方法是解答本題的關鍵.8、D【解析】

根據整式的運算法則,先利用已知求出a的值,再將a的值帶入所要求解的代數式中即可得到此題答案.【詳解】解:由題意可知:,原式故選:D.【點睛】此題考查整式的混合運算,解題的關鍵在于利用整式的運算法則進行化簡求得代數式的值9、D【解析】

根據平行線分線段成比例定理及相似三角形的判定與性質進行分析可得出結論.【詳解】由DE∥BC,可得△ADE∽△ABC,并可得:,,,故A,B,C正確;D錯誤;故選D.【點睛】考點:1.平行線分線段成比例;2.相似三角形的判定與性質.10、D【解析】試題分析:A、選舉中,人們通常最關心的數據為出現次數最多的數,所以A選項的說法正確;B、從1,2,3,4,5中隨機抽取一個數,由于奇數由3個,而偶數有2個,則取得奇數的可能性比較大,所以B選項的說法正確;C、甲、乙兩人在相同條件下各射擊10次,他們的平均成績相同,方差分別為S甲2=0.4,S乙2=0.6,則甲的射擊成績較穩定,所以C選項的說法正確;D、數據3,5,4,1,﹣2由小到大排列為﹣2,1,3,4,5,所以中位數是3,所以D選項的說法錯誤.故選D.考點:隨機事件發生的可能性(概率)的計算方法11、C【解析】正五邊形繞著它的中心旋轉后與它本身重合,最小的旋轉角度數是=72度,故選C.12、D【解析】解:設動車速度為每小時x千米,則可列方程為:﹣=.故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、x≠1【解析】

解:∵有意義,∴x-1≠0,∴x≠1;故答案是:x≠1.14、平移,軸對稱【解析】分析:根據平移的性質和軸對稱的性質即可得到由△OCD得到△AOB的過程.詳解:△ABC向上平移5個單位,再沿y軸對折,得到△DEF,故答案為:平移,軸對稱.點睛:考查了坐標與圖形變化-旋轉,平移,軸對稱,解題時需要注意:平移的距離等于對應點連線的長度,對稱軸為對應點連線的垂直平分線,旋轉角為對應點與旋轉中心連線的夾角的大小.15、1或5.【解析】

小正方形的高不變,根據面積即可求出小正方形平移的距離.【詳解】解:當兩個正方形重疊部分的面積為2平方厘米時,重疊部分寬為2÷2=1,①如圖,小正方形平移距離為1厘米;②如圖,小正方形平移距離為4+1=5厘米.故答案為1或5,【點睛】此題考查了平移的性質,要明確,平移前后圖形的形狀和面積不變.畫出圖形即可直觀解答.16、1×10﹣1【解析】

絕對值小于1的正數也可以利用科學記數法表示,一般形式為a×10-n,與較大數的科學記數法不同的是其所使用的是負指數冪,指數由原數左邊起第一個不為零的數字前面的0的個數所決定.【詳解】解:10nm用科學記數法可表示為1×10-1m,

故答案為1×10-1.【點睛】本題考查用科學記數法表示較小的數,一般形式為a×10-n,其中1≤|a|<10,n為由原數左邊起第一個不為零的數字前面的0的個數所決定.17、1【解析】【分析】直接利用平方差公式分解因式進而結合相反數的定義分析得出答案.【詳解】∵a,b互為相反數,∴a+b=1,∴a2﹣b2=(a+b)(a﹣b)=1,故答案為1.【點睛】本題考查了公式法分解因式以及相反數的定義,正確分解因式是解題關鍵.18、20【解析】

先求出半徑為30cm且圓心角為240°的扇形紙片的弧長,再利用底面周長=展開圖的弧長可得.【詳解】=40π.

設這個圓錐形紙帽的底面半徑為r.

根據題意,得40π=2πr,

解得r=20cm.故答案是:20.【點睛】解答本題的關鍵是有確定底面周長=展開圖的弧長這個等量關系,然后由扇形的弧長公式和圓的周長公式求值.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)見解析;(2)2【解析】試題分析:(1)連接OB,證PB⊥OB.根據四邊形的內角和為360°,結合已知條件可得∠OBP=90°得證;(2)連接OP,根據切線長定理得直角三角形,根據含30度角的直角三角形的性質即可求得結果.(1)連接OB.∵OA=OB,∴∠OBA=∠BAC=30°.∴∠AOB=80°-30°-30°=20°.∵PA切⊙O于點A,∴OA⊥PA,∴∠OAP=90°.∵四邊形的內角和為360°,∴∠OBP=360°-90°-60°-20°=90°.∴OB⊥PB.又∵點B是⊙O上的一點,∴PB是⊙O的切線.(2)連接OP,∵PA、PB是⊙O的切線,∴PA=PB,∠OPA=∠OPB=,∠APB=30°.在Rt△OAP中,∠OAP=90°,∠OPA=30°,∴OP=2OA=2×2=1.∴PA=OP2-OA2=2∵PA=PB,∠APB=60°,∴PA=PB=AB=2.考點:此題考查了切線的判定、切線長定理、含30度角的直角三角形的性質點評:要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.20、(1)服裝項目的權數是10%,普通話項目對應扇形的圓心角是72°;(2)眾數是85,中位數是82.5;(3)選擇李明參加“美麗邵陽,我為家鄉做代言”主題演講比賽,理由見解析.【解析】

(1)根據扇形圖用1減去其它項目的權重可求得服裝項目的權重,用360度乘以普通話項目的權重即可求得普通話項目對應扇形的圓心角大小;(2)根據統計表中的數據可以求得李明在選拔賽中四個項目所得分數的眾數和中位數;(3)根據統計圖和統計表中的數據可以分別計算出李明和張華的成績,然后比較大小,即可解答本題.【詳解】(1)服裝項目的權數是:1﹣20%﹣30%﹣40%=10%,普通話項目對應扇形的圓心角是:360°×20%=72°;(2)明在選拔賽中四個項目所得分數的眾數是85,中位數是:(80+85)÷2=82.5;(3)李明得分為:85×10%+70×20%+80×30%+85×40%=80.5,張華得分為:90×10%+75×20%+75×30%+80×40%=78.5,∵80.5>78.5,∴李明的演講成績好,故選擇李明參加“美麗邵陽,我為家鄉做代言”主題演講比賽.【點睛】本題考查了扇形統計圖、中位數、眾數、加權平均數,明確題意,結合統計表和統計圖找出所求問題需要的條件,運用數形結合的思想進行解答是解題的關鍵.21、(1)見解析;(2)【解析】分析:(1)如下圖,連接OD,由OA=OD可得∠DAO=∠ADO,結合∠CAD=∠DAB,可得∠CAD=∠ADO,從而可得OD∥AC,由此可得∠C+∠CDO=180°,結合∠C=90°可得∠CDO=90°即可證得CD是⊙O的切線;(2)如下圖,連接BD,由AB是⊙O的直徑可得∠ADB=90°=∠C,結合∠CAD=∠DAB可得△ACD∽△ADB,由此可得,在Rt△ABD中由AD=6,AB=9易得BD=,由此即可解得CD的長了.詳解:(1)如下圖,連接OD.∵OA=OD,∴∠DAB=∠ODA,∵∠CAD=∠DAB,∴∠ODA=∠CAD∴AC∥OD∴∠C+∠ODC=180°∵∠C=90°∴∠ODC=90°∴OD⊥CD,∴CD是⊙O的切線.(2)如下圖,連接BD,∵AB是⊙O的直徑,∴∠ADB=90°,∵AB=9,AD=6,∴BD===3,∵∠CAD=∠BAD,∠C=∠ADB=90°,∴△ACD∽△ADB,∴,∴,∴CD=.點睛:這是一道考查“圓和直線的位置關系與相似三角形的判定和性質”的幾何綜合題,作出如圖所示的輔助線,熟悉“圓的切線的判定方法”和“相似三角形的判定和性質”是正確解答本題的關鍵.22、(1)4;(2),;(3).【解析】

(1)過點D作DE⊥x軸于點E,求出二次函數的頂點D的坐標,然后求出A、B、C的坐標,然后根據即可得出結論;(2)設點是第二象限拋物線對稱軸左側上一點,將沿軸翻折得到,點,連接,過點作于,過點作軸于,證出,列表比例式,并找出關于t的方程即可得出結論;(3)判斷點D在直線上,根據勾股定理求出DH,即可求出平移后的二次函數解析式,設點,,過點作于,于,軸于,根據勾股定理求出AG,聯立方程即可求出m、n,從而求出結論.【詳解】解:(1)過點D作DE⊥x軸于點E當時,得到,頂點,∴DE=1由,得,;令,得;,,,,OC=3.(2)如圖1,設點是第二象限拋物線對稱軸左側上一點,將沿軸翻折得到,點,連接,過點作于,過點作軸于,由翻折得:,;,,軸,,,,由勾股定理得:,,,,,,,解得:(不符合題意,舍去),;,.(3)原拋物線的頂點在直線上,直線交軸于點,如圖2,過點作軸于,;由題意,平移后的新拋物線頂點為,解析式為,設點,,則,,,過點作于,于,軸于,,,、分別平分,,,點在拋物線上,,根據題意得:解得:【點睛】此題考查的是二次函數的綜合大題,難度較大,掌握二次函數平移規律、二次函數的圖象及性質、相似三角形的判定及性質和勾股定理是解決此題的關鍵.23、(1)先沿y軸翻折,再向右平移1個單位,向下平移3個單位;先向左平移1個單位,向下平移3個單位,再沿y軸翻折;(2)見解析;(3).【解析】

(1)△ABC先沿y軸翻折,再向右平移1個單位,向下平移3個單位;或先向左平移1個單位,向下平移3個單位,再沿y軸翻折,即可得到△DEF;按照旋轉中心、旋轉角度以及旋轉方向,即可得到△ABC繞點B逆時針旋轉的圖形△;依據點C所形成的路徑為扇形的弧,利用弧長計算公式進行計算即可.【詳解】解:(1)答案不唯一例如:先沿y軸翻折,再向右平移1個單位,向下平移3個單位;先向左平移1個單位,向下平移3個單位,再沿y軸翻折.(2)分別將點C、A繞點B逆時針旋轉得到點、,如圖所示,△即為所求;(3)點C所形成的路徑的長為:.故答案為(1)先沿y軸翻折,再向右平移1個單位,向下平移3個單位;先向左平移1個單位,向下平移3個單位,再沿y軸翻折;(2)見解析;(3)π..【點睛】本題考查坐標與圖形變化旋轉,平移,對稱,解題時需要注意:平移的距離等于對應點連線的長度,對稱軸為對應點連線的垂直平分線,旋轉角為對應點與旋轉中心連線的夾角的大小.24、見解析【解析】

據∠1=∠2可得∠BAC=∠EAD,再加上條件AB=AE,∠C=∠D可證明△ABC≌△AED.【詳解】證明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD.∵在△ABC和△AED中,∴△ABC≌△AED(AAS).【點睛】此題主要考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角25、(1)40;(2)72;(3)1.【解析】

(1)用最想去A景點的人數除以它所占的百分比即可得到被調查的學生總人數;(2)先計算出最想去D景點的人數,再補全條形統計圖,然后用360°乘以最想去

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論