2023-2024學年遼寧省本溪市第一中學高考壓軸卷數學試卷含解析_第1頁
2023-2024學年遼寧省本溪市第一中學高考壓軸卷數學試卷含解析_第2頁
2023-2024學年遼寧省本溪市第一中學高考壓軸卷數學試卷含解析_第3頁
2023-2024學年遼寧省本溪市第一中學高考壓軸卷數學試卷含解析_第4頁
2023-2024學年遼寧省本溪市第一中學高考壓軸卷數學試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年遼寧省本溪市第一中學高考壓軸卷數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數滿足,當時,,則()A.或 B.或C.或 D.或2.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.3.在等腰直角三角形中,,為的中點,將它沿翻折,使點與點間的距離為,此時四面體的外接球的表面積為().A. B. C. D.4.已知.給出下列判斷:①若,且,則;②存在使得的圖象向右平移個單位長度后得到的圖象關于軸對稱;③若在上恰有7個零點,則的取值范圍為;④若在上單調遞增,則的取值范圍為.其中,判斷正確的個數為()A.1 B.2 C.3 D.45.若a>b>0,0<c<1,則A.logac<logbc B.logca<logcb C.ac<bc D.ca>cb6.明代數學家程大位(1533~1606年),有感于當時籌算方法的不便,用其畢生心血寫出《算法統宗》,可謂集成計算的鼻祖.如圖所示的程序框圖的算法思路源于其著作中的“李白沽酒”問題.執行該程序框圖,若輸出的的值為,則輸入的的值為()A. B. C. D.7.已知三棱錐的所有頂點都在球的球面上,平面,,若球的表面積為,則三棱錐的體積的最大值為()A. B. C. D.8.已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點,F為C的焦點,若|FA|=2|FB|,則|FA|=()A.1 B.2 C.3 D.49.設集合,,若集合中有且僅有2個元素,則實數的取值范圍為A. B.C. D.10.如圖,在平行四邊形中,對角線與交于點,且,則()A. B.C. D.11.設,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件12.計算等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是定義在上的奇函數,當時,,則不等式的解集用區間表示為__________.14.已知一個四面體的每個頂點都在表面積為的球的表面上,且,,則__________.15.從2、3、5、7、11、13這六個質數中任取兩個數,這兩個數的和仍是質數的概率是________(結果用最簡分數表示)16.已知數列滿足:,,若對任意的正整數均有,則實數的最大值是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在斜三棱柱中,已知為正三角形,D,E分別是,的中點,平面平面,.(1)求證:平面;(2)求證:平面.18.(12分)某芯片公司為制定下一年的研發投入計劃,需了解年研發資金投入量x(單位:億元)對年銷售額y(單位:億元)的影響.該公司對歷史數據進行對比分析,建立了兩個函數模型:①y=α+βx2,②y=eλx+t,其中現該公司收集了近12年的年研發資金投入量xi和年銷售額yi的數據,i=1,2,?,12,并對這些數據作了初步處理,得到了右側的散點圖及一些統計量的值.令xyi=1i=1uv20667702004604.20i=1i=1i=1i=13125000215000.30814(1)設ui和yi的相關系數為r1,xi和(2)(i)根據(1)的選擇及表中數據,建立y關于x的回歸方程(系數精確到0.01);(ii)若下一年銷售額y需達到90億元,預測下一年的研發資金投入量x是多少億元?附:①相關系數r=i=1n(xi-x②參考數據:308=4×77,90≈9.4868,e19.(12分)在中,角、、所對的邊分別為、、,角、、的度數成等差數列,.(1)若,求的值;(2)求的最大值.20.(12分)設,函數.(1)當時,求在內的極值;(2)設函數,當有兩個極值點時,總有,求實數的值.21.(12分)電視傳媒公司為了解某地區觀眾對某體育節目的收視情況,隨機抽取了100名觀眾進行調查,其中女性有55名,下面是根據調查結果繪制的觀眾日均收看該體育節目時間的頻率分布直方圖:將日均收看該體育節目時間不低于40分鐘的觀眾稱為“體育迷”.(1)根據已知條件完成下面的列聯表,并據此資料你是否認為“體育迷”與性別有關?非體育迷體育迷合計男女1055合計(2)將上述調查所得到的頻率視為概率.現在從該地區大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數為X.若每次抽取的結果是相互獨立的,求X的分布列,期望E(X)和方差D(X).附:.P(K2≥k)0.050.01k3.8416.63522.(10分)在多面體中,四邊形是正方形,平面,,,為的中點.(1)求證:;(2)求平面與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

簡單判斷可知函數關于對稱,然后根據函數的單調性,并計算,結合對稱性,可得結果.【詳解】由,可知函數關于對稱當時,,可知在單調遞增則又函數關于對稱,所以且在單調遞減,所以或,故或所以或故選:C【點睛】本題考查函數的對稱性以及單調性求解不等式,抽象函數給出式子的意義,比如:,,考驗分析能力,屬中檔題.2、B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據三視圖進行調整.3、D【解析】

如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點,這樣根據幾何關系,求外接球的半徑.【詳解】中,易知,翻折后,,,設外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點,設幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【點睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計算能力,屬于中檔題型,求幾何體的外接球的半徑時,一般可以用補形法,因正方體,長方體的外接球半徑容易求,可以將一些特殊的幾何體補形為正方體或長方體,比如三條側棱兩兩垂直的三棱錐,或是構造直角三角形法,確定球心的位置,構造關于外接球半徑的方程求解.4、B【解析】

對函數化簡可得,進而結合三角函數的最值、周期性、單調性、零點、對稱性及平移變換,對四個命題逐個分析,可選出答案.【詳解】因為,所以周期.對于①,因為,所以,即,故①錯誤;對于②,函數的圖象向右平移個單位長度后得到的函數為,其圖象關于軸對稱,則,解得,故對任意整數,,所以②錯誤;對于③,令,可得,則,因為,所以在上第1個零點,且,所以第7個零點,若存在第8個零點,則,所以,即,解得,故③正確;對于④,因為,且,所以,解得,又,所以,故④正確.故選:B.【點睛】本題考查三角函數的恒等變換,考查三角函數的平移變換、最值、周期性、單調性、零點、對稱性,考查學生的計算求解能力與推理能力,屬于中檔題.5、B【解析】試題分析:對于選項A,,,,而,所以,但不能確定的正負,所以它們的大小不能確定;對于選項B,,,兩邊同乘以一個負數改變不等號方向,所以選項B正確;對于選項C,利用在第一象限內是增函數即可得到,所以C錯誤;對于選項D,利用在上為減函數易得,所以D錯誤.所以本題選B.【考點】指數函數與對數函數的性質【名師點睛】比較冪或對數值的大小,若冪的底數相同或對數的底數相同,通常利用指數函數或對數函數的單調性進行比較;若底數不同,可考慮利用中間量進行比較.6、C【解析】

根據程序框圖依次計算得到答案.【詳解】,;,;,;,;,此時不滿足,跳出循環,輸出結果為,由題意,得.故選:【點睛】本題考查了程序框圖的計算,意在考查學生的理解能力和計算能力.7、B【解析】

由題意畫出圖形,設球0得半徑為R,AB=x,AC=y,由球0的表面積為20π,可得R2=5,再求出三角形ABC外接圓的半徑,利用余弦定理及基本不等式求xy的最大值,代入棱錐體積公式得答案.【詳解】設球的半徑為,,,由,得.如圖:設三角形的外心為,連接,,,可得,則.在中,由正弦定理可得:,即,由余弦定理可得,,.則三棱錐的體積的最大值為.故選:.【點睛】本題考查三棱錐的外接球、三棱錐的側面積、體積,基本不等式等基礎知識,考查空間想象能力、邏輯思維能力、運算求解能力,考查數學轉化思想方法與數形結合的解題思想方法,是中檔題.8、C【解析】

方法一:設,利用拋物線的定義判斷出是的中點,結合等腰三角形的性質求得點的橫坐標,根據拋物線的定義求得,進而求得.方法二:設出兩點的橫坐標,由拋物線的定義,結合求得的關系式,聯立直線的方程和拋物線方程,寫出韋達定理,由此求得,進而求得.【詳解】方法一:由題意得拋物線的準線方程為,直線恒過定點,過分別作于,于,連接,由,則,所以點為的中點,又點是的中點,則,所以,又所以由等腰三角形三線合一得點的橫坐標為,所以,所以.方法二:拋物線的準線方程為,直線由題意設兩點橫坐標分別為,則由拋物線定義得又①②由①②得.故選:C【點睛】本小題主要考查拋物線的定義,考查直線和拋物線的位置關系,屬于中檔題.9、B【解析】

由題意知且,結合數軸即可求得的取值范圍.【詳解】由題意知,,則,故,又,則,所以,所以本題答案為B.【點睛】本題主要考查了集合的關系及運算,以及借助數軸解決有關問題,其中確定中的元素是解題的關鍵,屬于基礎題.10、C【解析】

畫出圖形,以為基底將向量進行分解后可得結果.【詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.【點睛】應用平面向量基本定理應注意的問題(1)只要兩個向量不共線,就可以作為平面的一組基底,基底可以有無窮多組,在解決具體問題時,合理選擇基底會給解題帶來方便.(2)利用已知向量表示未知向量,實質就是利用平行四邊形法則或三角形法則進行向量的加減運算或數乘運算.11、B【解析】

先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據此可知“”是“”的必要不充分條件.故選:B【點睛】本題考查了必要不充分條件的判定,考查了學生數學運算,邏輯推理能力,屬于基礎題.12、A【解析】

利用誘導公式、特殊角的三角函數值,結合對數運算,求得所求表達式的值.【詳解】原式.故選:A【點睛】本小題主要考查誘導公式,考查對數運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設,則,由題意可得故當時,由不等式,可得,或求得,或故答案為(14、【解析】由題意可得,該四面體的四個頂點位于一個長方體的四個頂點上,設長方體的長寬高為,由題意可得:,據此可得:,則球的表面積:,結合解得:.點睛:與球有關的組合體問題,一種是內切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關元素間的數量關系,并作出合適的截面圖,如球內切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.15、【解析】

依據古典概型的計算公式,分別求“任取兩個數”和“任取兩個數,和是質數”的事件數,計算即可。【詳解】“任取兩個數”的事件數為,“任取兩個數,和是質數”的事件有(2,3),(2,5),(2,11)共3個,所以任取兩個數,這兩個數的和仍是質數的概率是。【點睛】本題主要考查古典概型的概率求法。16、2【解析】

根據遞推公式可考慮分析,再累加求出關于關于參數的關系,根據表達式的取值分析出,再用數學歸納法證明滿足條件即可.【詳解】因為,累加可得.若,注意到當時,,不滿足對任意的正整數均有.所以.當時,證明:對任意的正整數都有.當時,成立.假設當時結論成立,即,則,即結論對也成立.由數學歸納法可知,對任意的正整數都有.綜上可知,所求實數的最大值是2.故答案為:2【點睛】本題主要考查了根據數列的遞推公式求解參數最值的問題,需要根據遞推公式累加求解,同時注意結合參數的范圍問題進行分析.屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】

(1)根據,分別是,的中點,即可證明,從而可證平面;(2)先根據為正三角形,且D是的中點,證出,再根據平面平面,得到平面,從而得到,結合,即可得證.【詳解】(1)∵,分別是,的中點∴∵平面,平面∴平面.(2)∵為正三角形,且D是的中點∴∵平面平面,且平面平面,平面∴平面∵平面∴∵且∴∵,平面,且∴平面.【點睛】本題考查直線與平面平行的判定,面面垂直的性質等,解題時要認真審題,注意空間思維能力的培養,中檔題.18、(1)模型y=eλx+t的擬合程度更好;(2)(i)v=0.02x+3.84【解析】

(1)由相關系數求出兩個系數,比較大小可得;(2)(i)先建立U額R0關于x的線性回歸方程,從而得出y(ii)把y=90代入(i)中的回歸方程可得x值.【詳解】本小題主要考查回歸分析等基礎知識,考查數據處理能力、運算求解能力、抽象概括能力及應用意識,考查統計與概率思想、分類與整合思想,考查數學抽象、數學運算、數學建模、數據分析等核心素養,體現基礎性、綜合性與應用性.解:(1)r1r2則r1<r(2)(i)先建立U額R0由y=eλx+t,得lny=t+λx由于λ=i=1t=所以U額R0關于x所以lny=0.02x+3.84(ii)下一年銷售額y需達到90億元,即y=90,代入y=e0.02x+3.84又e4.4998≈90,所以所以x≈4.4998-3.84所以預測下一年的研發資金投入量約是32.99億元【點睛】本小題主要考查拋物線的定義、拋物線的標準方程、直線與拋物線的位置關系、導數幾何意義等基礎知識,考查推理論證能力、運算求解能力,考查函數與方程思想、化歸與轉化思想、數形結合思想等,考查數學運算、直觀想象、邏輯推理等核心素養,體現基礎性、綜合性與應用性19、(1);(2).【解析】

(1)由角的度數成等差數列,得.又.由正弦定理,得,即.由余弦定理,得,即,解得.(2)由正弦定理,得.由,得.所以當,即時,.【方法點睛】解三角形問題基本思想方法:從條件出發,利用正弦定理(或余弦定理)進行代換、轉化.逐步化為純粹的邊與邊或角與角的關系,即考慮如下兩條途徑:①統一成角進行判斷,常用正弦定理及三角恒等變換;②統一成邊進行判斷,常用余弦定理、面積公式等.20、(1)極大值是,無極小值;(2)【解析】

(1)當時,可求得,令,利用導數可判斷的單調性并得其零點,從而可得原函數的極值點及極大值;(2)表示出,并求得,由題意,得方程有兩個不同的實根,,從而可得△及,由,得.則可化為對任意的恒成立,按照、、三種情況分類討論,分離參數后轉化為求函數的最值可解決;【詳解】(1)當時,.令,則,顯然在上單調遞減,又因為,故時,總有,所以在上單調遞減.由于,所以當時,;當時,.當變化時,的變化情況如下表:+-增極大減所以在上的極大值是,無極小值.(2)由于,則.由題意,方程有兩個不等實根,則,解得,且,又,所以.由,,可得又.將其代入上式得:.整理得,即當時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論