云南省中央民大附中2024年高考考前模擬數學試題含解析_第1頁
云南省中央民大附中2024年高考考前模擬數學試題含解析_第2頁
云南省中央民大附中2024年高考考前模擬數學試題含解析_第3頁
云南省中央民大附中2024年高考考前模擬數學試題含解析_第4頁
云南省中央民大附中2024年高考考前模擬數學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省中央民大附中2024年高考考前模擬數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知是的共軛復數,則()A. B. C. D.2.某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應點為,圓柱表面上的點在左視圖上的對應點為,則在此圓柱側面上,從到的路徑中,最短路徑的長度為()A. B. C. D.23.已知定義在上的函數滿足,且當時,,則方程的最小實根的值為()A. B. C. D.4.已知集合M={x|﹣1<x<2},N={x|x(x+3)≤0},則M∩N=()A.[﹣3,2) B.(﹣3,2) C.(﹣1,0] D.(﹣1,0)5.已知集合,,則A. B.C. D.6.已知集合A,則集合()A. B. C. D.7.若復數z滿足,則()A. B. C. D.8.根據黨中央關于“精準”脫貧的要求,我市某農業經濟部門派四位專家對三個縣區進行調研,每個縣區至少派一位專家,則甲,乙兩位專家派遣至同一縣區的概率為()A. B. C. D.9.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長為1),則這個幾何體的體積是()A. B. C.16 D.3210.已知函數,,若方程恰有三個不相等的實根,則的取值范圍為()A. B.C. D.11.已知數列是公比為的等比數列,且,若數列是遞增數列,則的取值范圍為()A. B. C. D.12.年某省將實行“”的新高考模式,即語文、數學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(為自然對數的底數,),若函數恰有個零點,則實數的取值范圍為__________________.14.如圖,養殖公司欲在某湖邊依托互相垂直的湖岸線、圍成一個三角形養殖區.為了便于管理,在線段之間有一觀察站點,到直線,的距離分別為8百米、1百米,則觀察點到點、距離之和的最小值為______________百米.15.函數的定義域為______.16.如圖,是圓的直徑,弦的延長線相交于點垂直的延長線于點.求證:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,設為的導數,.(1)求,;(2)猜想的表達式,并證明你的結論.18.(12分)如圖,直三棱柱中,底面為等腰直角三角形,,,,分別為,的中點,為棱上一點,若平面.(1)求線段的長;(2)求二面角的余弦值.19.(12分)已知為等差數列,為等比數列,的前n項和為,滿足,,,.(1)求數列和的通項公式;(2)令,數列的前n項和,求.20.(12分)設函數f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(21.(12分)在以ABCDEF為頂點的五面體中,底面ABCD為菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,點G為CD中點,平面EAD⊥平面ABCD.(1)證明:BD⊥EG;(2)若三棱錐,求菱形ABCD的邊長.22.(10分)已知函數(1)若函數在處取得極值1,證明:(2)若恒成立,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

先利用復數的除法運算法則求出的值,再利用共軛復數的定義求出a+bi,從而確定a,b的值,求出a+b.【詳解】i,∴a+bi=﹣i,∴a=0,b=﹣1,∴a+b=﹣1,故選:A.【點睛】本題主要考查了復數代數形式的乘除運算,考查了共軛復數的概念,是基礎題.2、B【解析】

首先根據題中所給的三視圖,得到點M和點N在圓柱上所處的位置,將圓柱的側面展開圖平鋪,點M、N在其四分之一的矩形的對角線的端點處,根據平面上兩點間直線段最短,利用勾股定理,求得結果.【詳解】根據圓柱的三視圖以及其本身的特征,將圓柱的側面展開圖平鋪,可以確定點M和點N分別在以圓柱的高為長方形的寬,圓柱底面圓周長的四分之一為長的長方形的對角線的端點處,所以所求的最短路徑的長度為,故選B.點睛:該題考查的是有關幾何體的表面上兩點之間的最短距離的求解問題,在解題的過程中,需要明確兩個點在幾何體上所處的位置,再利用平面上兩點間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關特征求得結果.3、C【解析】

先確定解析式求出的函數值,然后判斷出方程的最小實根的范圍結合此時的,通過計算即可得到答案.【詳解】當時,,所以,故當時,,所以,而,所以,又當時,的極大值為1,所以當時,的極大值為,設方程的最小實根為,,則,即,此時令,得,所以最小實根為411.故選:C.【點睛】本題考查函數與方程的根的最小值問題,涉及函數極大值、函數解析式的求法等知識,本題有一定的難度及高度,是一道有較好區分度的壓軸選這題.4、C【解析】

先化簡N={x|x(x+3)≤0}={x|-3≤x≤0},再根據M={x|﹣1<x<2},求兩集合的交集.【詳解】因為N={x|x(x+3)≤0}={x|-3≤x≤0},又因為M={x|﹣1<x<2},所以M∩N={x|﹣1<x≤0}.故選:C【點睛】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎題.5、D【解析】

因為,,所以,,故選D.6、A【解析】

化簡集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點睛】本題考查集合間的運算,屬于基礎題.7、D【解析】

先化簡得再求得解.【詳解】所以.故選:D【點睛】本題主要考查復數的運算和模的計算,意在考查學生對這些知識的理解掌握水平.8、A【解析】

每個縣區至少派一位專家,基本事件總數,甲,乙兩位專家派遣至同一縣區包含的基本事件個數,由此能求出甲,乙兩位專家派遣至同一縣區的概率.【詳解】派四位專家對三個縣區進行調研,每個縣區至少派一位專家基本事件總數:甲,乙兩位專家派遣至同一縣區包含的基本事件個數:甲,乙兩位專家派遣至同一縣區的概率為:本題正確選項:【點睛】本題考查概率的求法,考查古典概型等基礎知識,考查運算求解能力,是基礎題.9、A【解析】幾何體為一個三棱錐,高為4,底面為一個等腰直角三角形,直角邊長為4,所以體積是,選A.10、B【解析】

由題意可將方程轉化為,令,,進而將方程轉化為,即或,再利用的單調性與最值即可得到結論.【詳解】由題意知方程在上恰有三個不相等的實根,即,①.因為,①式兩邊同除以,得.所以方程有三個不等的正實根.記,,則上述方程轉化為.即,所以或.因為,當時,,所以在,上單調遞增,且時,.當時,,在上單調遞減,且時,.所以當時,取最大值,當,有一根.所以恰有兩個不相等的實根,所以.故選:B.【點睛】本題考查了函數與方程的關系,考查函數的單調性與最值,轉化的數學思想,屬于中檔題.11、D【解析】

先根據已知條件求解出的通項公式,然后根據的單調性以及得到滿足的不等關系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數列是單調遞增數列,所以,則,化簡得,所以.故選:D.【點睛】本題考查數列通項公式求解以及根據數列單調性求解參數范圍,難度一般.已知數列單調性,可根據之間的大小關系分析問題.12、B【解析】

甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

令,則,恰有四個解.由判斷函數增減性,求出最小值,列出相應不等式求解得出的取值范圍.【詳解】解:令,則,恰有四個解.有兩個解,由,可得在上單調遞減,在上單調遞增,則,可得.設的負根為,由題意知,,,,則,.故答案為:.【點睛】本題考查導數在函數當中的應用,屬于難題.14、【解析】

建系,將直線用方程表示出來,再用參數表示出線段的長度,最后利用導數來求函數最小值.【詳解】以為原點,所在直線分別作為軸,建立平面直角坐標系,則.設直線,即,則,所以,所以,,則,則,當時,,則單調遞減,當時,,則單調遞增,所以當時,最短,此時.故答案為:【點睛】本題考查導數的實際應用,屬于中檔題.15、【解析】

對數函數的定義域需滿足真數大于0,再由指數型不等式求解出解集即可.【詳解】對函數有意義,即.故答案為:【點睛】本題考查求對數函數的定義域,還考查了指數型不等式求解,屬于基礎題.16、證明見解析.【解析】試題分析:四點共圓,所以,又△∽△,所以,即,得證.試題解析:A.連接,因為為圓的直徑,所以,又,則四點共圓,所以.又△∽△,所以,即,∴.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、,;,證明見解析【解析】

對函數進行求導,并通過三角恒等變換進行轉化求得的表達式,對函數再進行求導并通過三角恒等變換進行轉化求得的表達式;根據中,的表達式進行歸納猜想,再利用數學歸納法證明即可.【詳解】(1),其中,[,其中,(2)猜想,下面用數學歸納法證明:①當時,成立,②假設時,猜想成立即當時,當時,猜想成立由①②對成立【點睛】本題考查導數及其應用、三角恒等變換、歸納與猜想和數學歸納法;考查學生的邏輯推理能力和運算求解能力;熟練掌握用數學歸納法進行證明的步驟是求解本題的關鍵;屬于中檔題.18、(1)(2)【解析】

(1)先證得,設與交于點,在中解直角三角形求得,由此求得的值.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的余弦值.【詳解】(1)由題意,,設與交于點,在中,可求得,則,可求得,則(2)以為原點,方向為軸,方向為軸,方向為軸,建立空間直角坐標系.,,,,,易得平面的法向量為.,,易得平面的法向量為.設二面角為,由圖可知為銳角,所以.即二面角的余弦值為.【點睛】本小題主要考查根據線面垂直求邊長,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19、(1),;(2).【解析】

(1)設的公差為,的公比為,由基本量法列式求出后可得通項公式;(2)奇數項分一組用裂項相消法求和,偶數項分一組用等比數列求和公式求和.【詳解】(1)設的公差為,的公比為,由,.得:,解得,∴,;(2)由,得,為奇數時,,為偶數時,,∴.【點睛】本題考查求等差數列和等比數列的通項公式,考查分組求和法及裂項相消法、等差數列與等比數列的前項和公式,求通項公式采取的是基本量法,即求出公差、公比,由通項公式前項和公式得出相應結論.數列求和問題,對不是等差數列或等比數列的數列求和,需掌握一些特殊方法:錯位相減法,裂項相消法,分組(并項)求和法,倒序相加法等等.20、(I)π;(II)-【解析】

(I)化簡得到fx(II)f(α2)=2sin【詳解】(I)f(x)==2sin2x+(II)f(α2)=2sinα∈(π6,π),故α+故α+π12∈sin(2α+【點睛】本題考查了三角函數的周期,三角恒等變換,意在考查學生的計算能力和綜合應用能力.21、(1)詳見解析;(2).【解析】

(1)取中點,連,可得,結合平面EAD⊥平面ABCD,可證平面ABCD,進而有,再由底面是菱形可得,可得,可證得平面,即可證明結論;(2)設底面邊長為,由EFAB,AB=2EF,,求出體積,建立的方程,即可求出結論.【詳解】(1)取中點,連,底面ABCD為菱形,,,平面EAD⊥平面ABCD,平面平面平面,平面平面,底面ABCD為菱形,,為中點,,平面,平面平面,;(2)設菱形ABCD的邊長為,則,,,,,所以菱形ABCD的邊長為.【點睛】本題考查線線垂直的證明和椎體的體積,注意空間中垂直關系之間的相互轉化,體積問題要熟練應用等體積方法,屬于中檔題.22、(1)證明見詳解;(2)【解析】

(1)求出函數的導函數,由在處取得極值1,可得且.解出,構造函數,分析其單調性,結合,即可得到的范圍,命題得證;

(2)由分離參數,得到恒成立,構造函數,求導函數,再構造函數,進行二次求導.由知,則在上單調遞增.根據零點存在定理可知有唯一零點,且.由此判斷出時,單調遞減,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論