




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省實驗中學2024年高三(最后沖刺)數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某公園新購進盆錦紫蘇、盆虞美人、盆郁金香,盆盆栽,現將這盆盆栽擺成一排,要求郁金香不在兩邊,任兩盆錦紫蘇不相鄰的擺法共()種A. B. C. D.2.設、是兩條不同的直線,、是兩個不同的平面,則的一個充分條件是()A.且 B.且 C.且 D.且3.甲、乙、丙、丁四人通過抓鬮的方式選出一人周末值班(抓到“值”字的人值班).抓完鬮后,甲說:“我沒抓到.”乙說:“丙抓到了.”丙說:“丁抓到了”丁說:“我沒抓到."已知他們四人中只有一人說了真話,根據他們的說法,可以斷定值班的人是()A.甲 B.乙 C.丙 D.丁4.已知函數,則函數的圖象大致為()A. B.C. D.5.集合中含有的元素個數為()A.4 B.6 C.8 D.126.設,其中a,b是實數,則()A.1 B.2 C. D.7.若雙曲線:的一條漸近線方程為,則()A. B. C. D.8.對于任意,函數滿足,且當時,函數.若,則大小關系是()A. B. C. D.9.已知集合,,,則集合()A. B. C. D.10.關于函數有下述四個結論:()①是偶函數;②在區間上是單調遞增函數;③在上的最大值為2;④在區間上有4個零點.其中所有正確結論的編號是()A.①②④ B.①③ C.①④ D.②④11.函數的部分圖象如圖中實線所示,圖中圓與的圖象交于兩點,且在軸上,則下列說法中正確的是A.函數的最小正周期是B.函數的圖象關于點成中心對稱C.函數在單調遞增D.函數的圖象向右平移后關于原點成中心對稱12.如圖,平面ABCD,ABCD為正方形,且,E,F分別是線段PA,CD的中點,則異面直線EF與BD所成角的余弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,,,的夾角為30°,,則_________.14.設向量,,且,則_________.15.設函數,則______.16.在的二項展開式中,所有項的系數的和為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)團購已成為時下商家和顧客均非常青睞的一種省錢、高校的消費方式,不少商家同時加入多家團購網.現恰有三個團購網站在市開展了團購業務,市某調查公司為調查這三家團購網站在本市的開展情況,從本市已加入了團購網站的商家中隨機地抽取了50家進行調查,他們加入這三家團購網站的情況如下圖所示.(1)從所調查的50家商家中任選兩家,求他們加入團購網站的數量不相等的概率;(2)從所調查的50家商家中任取兩家,用表示這兩家商家參加的團購網站數量之差的絕對值,求隨機變量的分布列和數學期望;(3)將頻率視為概率,現從市隨機抽取3家已加入團購網站的商家,記其中恰好加入了兩個團購網站的商家數為,試求事件“”的概率.18.(12分)設函數.(1)當時,解不等式;(2)設,且當時,不等式有解,求實數的取值范圍.19.(12分)已知,.(1)當時,證明:;(2)設直線是函數在點處的切線,若直線也與相切,求正整數的值.20.(12分)已知矩陣,.求矩陣;求矩陣的特征值.21.(12分)在平面直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)若直線與曲線交于、兩點,求的面積.22.(10分)在極坐標系中,曲線的極坐標方程為,直線的極坐標方程為,設與交于、兩點,中點為,的垂直平分線交于、.以為坐標原點,極軸為軸的正半軸建立直角坐標系.(1)求的直角坐標方程與點的直角坐標;(2)求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
間接法求解,兩盆錦紫蘇不相鄰,被另3盆隔開有,扣除郁金香在兩邊有,即可求出結論.【詳解】使用插空法,先排盆虞美人、盆郁金香有種,然后將盆錦紫蘇放入到4個位置中有種,根據分步乘法計數原理有,扣除郁金香在兩邊,排盆虞美人、盆郁金香有種,再將盆錦紫蘇放入到3個位置中有,根據分步計數原理有,所以共有種.故選:B.【點睛】本題考查排列應用問題、分步乘法計數原理,不相鄰問題插空法是解題的關鍵,屬于中檔題.2、B【解析】由且可得,故選B.3、A【解析】
可采用假設法進行討論推理,即可得到結論.【詳解】由題意,假設甲:我沒有抓到是真的,乙:丙抓到了,則丙:丁抓到了是假的,丁:我沒有抓到就是真的,與他們四人中只有一個人抓到是矛盾的;假設甲:我沒有抓到是假的,那么丁:我沒有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以斷定值班人是甲.故選:A.【點睛】本題主要考查了合情推理及其應用,其中解答中合理采用假設法進行討論推理是解答的關鍵,著重考查了推理與分析判斷能力,屬于基礎題.4、A【解析】
用排除法,通過函數圖像的性質逐個選項進行判斷,找出不符合函數解析式的圖像,最后剩下即為此函數的圖像.【詳解】設,由于,排除B選項;由于,所以,排除C選項;由于當時,,排除D選項.故A選項正確.故選:A【點睛】本題考查了函數圖像的性質,屬于中檔題.5、B【解析】解:因為集合中的元素表示的是被12整除的正整數,那么可得為1,2,3,4,6,,12故選B6、D【解析】
根據復數相等,可得,然后根據復數模的計算,可得結果.【詳解】由題可知:,即,所以則故選:D【點睛】本題考查復數模的計算,考驗計算,屬基礎題.7、A【解析】
根據雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點睛】本小題主要考查雙曲線的漸近線,屬于基礎題.8、A【解析】
由已知可得的單調性,再由可得對稱性,可求出在單調性,即可求出結論.【詳解】對于任意,函數滿足,因為函數關于點對稱,當時,是單調增函數,所以在定義域上是單調增函數.因為,所以,.故選:A.【點睛】本題考查利用函數性質比較函數值的大小,解題的關鍵要掌握函數對稱性的代數形式,屬于中檔題..9、D【解析】
根據集合的混合運算,即可容易求得結果.【詳解】,故可得.故選:D.【點睛】本題考查集合的混合運算,屬基礎題.10、C【解析】
根據函數的奇偶性、單調性、最值和零點對四個結論逐一分析,由此得出正確結論的編號.【詳解】的定義域為.由于,所以為偶函數,故①正確.由于,,所以在區間上不是單調遞增函數,所以②錯誤.當時,,且存在,使.所以當時,;由于為偶函數,所以時,所以的最大值為,所以③錯誤.依題意,,當時,,所以令,解得,令,解得.所以在區間,有兩個零點.由于為偶函數,所以在區間有兩個零點.故在區間上有4個零點.所以④正確.綜上所述,正確的結論序號為①④.故選:C【點睛】本小題主要考查三角函數的奇偶性、單調性、最值和零點,考查化歸與轉化的數學思想方法,屬于中檔題.11、B【解析】
根據函數的圖象,求得函數,再根據正弦型函數的性質,即可求解,得到答案.【詳解】根據給定函數的圖象,可得點的橫坐標為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當時,,即函數的一個對稱中心為,即函數的圖象關于點成中心對稱.故選B.【點睛】本題主要考查了由三角函數的圖象求解函數的解析式,以及三角函數的圖象與性質,其中解答中根據函數的圖象求得三角函數的解析式,再根據三角函數的圖象與性質求解是解答的關鍵,著重考查了數形結合思想,以及運算與求解能力,屬于基礎題.12、C【解析】
分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系.設.則.故異面直線EF與BD所成角的余弦值為.故選:C【點睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學生對這些知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
由求出,代入,進行數量積的運算即得.【詳解】,存在實數,使得.不共線,.,,,的夾角為30°,.故答案為:1.【點睛】本題考查向量共線定理和平面向量數量積的運算,屬于基礎題.14、【解析】
根據向量的數量積的計算,以及向量的平方,簡單計算,可得結果.【詳解】由題可知:且由所以故答案為:【點睛】本題考查向量的坐標計算,主要考查計算,屬基礎題.15、【解析】
由自變量所在定義域范圍,代入對應解析式,再由對數加減法運算法則與對數恒等式關系分別求值再相加,即為答案.【詳解】因為函數,則因為,則故故答案為:【點睛】本題考查分段函數求值,屬于簡單題.16、1【解析】
設,令,的值即為所有項的系數之和。【詳解】設,令,所有項的系數的和為。【點睛】本題主要考查二項式展開式所有項的系數的和的求法─賦值法。一般地,對于,展開式各項系數之和為,注意與“二項式系數之和”區分。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)從而的分布列為012;(3).【解析】
(1)運用概率的計算公式求概率分布,再運用數學期望公式進行求解;(2)借助題設條件運用貝努力公式進行分析求解:(1)記所選取額兩家商家加入團購網站的數量相等為事件,則,所以他們加入團購網站的數量不相等的概率為.(2)由題,知的可能取值分別為0,1,2,,,從而的分布列為012.(3)所調查的50家商家中加入了兩個團購網站的商家有25家,將頻率視為概率,則從市中任取一家加入團購網站的商家,他同時加入了兩個團購網站的概率為,所以,所以事件“”的概率為.18、(1);(2).【解析】
(1)通過分類討論去掉絕對值符號,進而解不等式組求得結果;(2)將不等式整理為,根據能成立思想可知,由此構造不等式求得結果.【詳解】(1)當時,可化為,由,解得;由,解得;由,解得.綜上所述:所以原不等式的解集為.(2),,,,有解,,即,又,,實數的取值范圍是.【點睛】本題考查絕對值不等式的求解、根據不等式有解求解參數范圍的問題;關鍵是明確對于不等式能成立的問題,通過分離變量的方式將問題轉化為所求參數與函數最值之間的比較問題.19、(1)證明見解析;(2).【解析】
(1)令,求導,可知單調遞增,且,,因而在上存在零點,在此取得最小值,再證最小值大于零即可.(2)根據題意得到在點處的切線的方程①,再設直線與相切于點,有,即,再求得在點處的切線直線的方程為②由①②可得,即,根據,轉化為,,令,轉化為要使得在上存在零點,則只需,求解.【詳解】(1)證明:設,則,單調遞增,且,,因而在上存在零點,且在上單調遞減,在上單調遞增,從而的最小值為.所以,即.(2),故,故切線的方程為①設直線與相切于點,注意到,從而切線斜率為,因此,而,從而直線的方程也為②由①②可知,故,由為正整數可知,,所以,,令,則,當時,為單調遞增函數,且,從而在上無零點;當時,要使得在上存在零點,則只需,,因為為單調遞增函數,,所以;因為為單調遞增函數,且,因此;因為為整數,且,所以.【點睛】本題主要考查導數在函數中的綜合應用,還考查了轉化化歸的思想和運算求解的能力,屬于難題.20、;,.【解析】
由題意,可得,利用矩陣的知識求解即可.矩陣的特征多項式為,令,求出矩陣的特征值.【詳解】設矩陣,則,所以,解得,,,,所以矩陣;矩陣的特征多項式為,令,解得,,即矩陣的兩個特征值為,.【點睛】本題考查矩陣的知識點,屬于常考題.21、(1),;(2).【解析】
(1)在直線的參數方程中消去參數可得出直線的普通方程,在曲線的極坐標方程兩邊同時乘以,結合可將曲線的極坐標方程化為直角坐標方程;(2)計算出直線截圓所得弦長,并計算出原點到直線的距離,利用三角形的面積公式可求得的面積.【詳解】(1)由得,故直線的普通方程是.由,得,代入公式得,得,故曲線的直角坐標方程是;(2)因為曲線的圓心為,半徑為,圓心到直線的距離為,則弦長.又到直線的距離為,所以.【點睛】本題考查參數方程、極坐標方程與普通方程之間的轉化,同時也考查了直線與圓中三角形面積的計算,考查計算能力,屬于中等題.22、(1),;(2)見解析.【解析】
(1)將曲線的極坐標方程變形為,再由可將曲線的極坐標方程化為直角坐標方程,將直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DBJ50-145-2012 城鎮道路路基設計規范
- 辦公自動化運維方案
- (高清版)DB54∕T 0467-2025 保護地蘆筍栽培技術規程
- 保險理賠員考試題庫
- 安全生產統計分析練習試卷1(共141題)
- 浙江省臺州市2024-2025學年高二下學期6月期末質量評估政治試卷(含答案)
- 湖北省八校聯考2024-2025學年高一下學期6月期末生物試卷(含答案)
- 山東美術館組織活動方案
- 居家安全游園活動方案
- 小門店活動策劃方案
- CJT 211-2005 聚合物基復合材料檢查井蓋
- 云南省曲靖市2023-2024學年八年級下學期期末語文試題
- 2022-2023學年湖北省隨州市曾都區人教PEP版五年級下冊期末學業質量監測英語試卷
- 鋼結構施工合同范本
- 2024年內蒙古錫林郭勒盟事業單位人才引進歷年【重點基礎提升】模擬試題(共500題)附帶答案詳解
- 建設工程監理安全資料臺帳建筑施工
- 浙江省溫州市鹿城區2023-2024學年八年級下學期科學期末質量檢測綜合模擬卷
- 大樹吊裝專項施工方案
- DZ∕T 0212.4-2020 礦產地質勘查規范 鹽類 第4部分:深藏鹵水鹽類(正式版)
- (XX)XX縣2021年度變更調查技術設計書
- 地震的應急逃生知識
評論
0/150
提交評論