




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
北京市徐悲鴻中學2024屆高三第二次診斷性檢測數學試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則下列說法中正確的是()A.是假命題 B.是真命題C.是真命題 D.是假命題2.若為純虛數,則z=()A. B.6i C. D.203.已知菱形的邊長為2,,則()A.4 B.6 C. D.4.某學校調查了200名學生每周的自習時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習時間的范圍是17.5,30],樣本數據分組為17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根據直方圖,這200名學生中每周的自習時間不少于22.5小時的人數是()A.56 B.60 C.140 D.1205.雙曲線的右焦點為,過點且與軸垂直的直線交兩漸近線于兩點,與雙曲線的其中一個交點為,若,且,則該雙曲線的離心率為()A. B. C. D.6.若非零實數、滿足,則下列式子一定正確的是()A. B.C. D.7.已知集合,若,則實數的取值范圍為()A. B. C. D.8.已知集合,,則=()A. B. C. D.9.某個小區住戶共200戶,為調查小區居民的7月份用水量,用分層抽樣的方法抽取了50戶進行調查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區內用水量超過15m3的住戶的戶數為()A.10 B.50 C.60 D.14010.已知實數集,集合,集合,則()A. B. C. D.11.某校為提高新入聘教師的教學水平,實行“老帶新”的師徒結對指導形式,要求每位老教師都有徒弟,每位新教師都有一位老教師指導,現選出3位老教師負責指導5位新入聘教師,則不同的師徒結對方式共有()種.A.360 B.240 C.150 D.12012.如圖,正三棱柱各條棱的長度均相等,為的中點,分別是線段和線段的動點(含端點),且滿足,當運動時,下列結論中不正確的是A.在內總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形二、填空題:本題共4小題,每小題5分,共20分。13.設數列為等差數列,其前項和為,已知,,若對任意都有成立,則的值為__________.14.如圖,在梯形中,∥,分別是的中點,若,則的值為___________.15.已知數列滿足,,若,則數列的前n項和______.16.直線與拋物線交于兩點,若,則弦的中點到直線的距離等于________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系xOy中,曲線C的參數方程為(m為參數),以坐標點O為極點,x軸的非負半軸為極軸建立極坐標系,直線l的極坐標方程為ρcos(θ+)=1.(1)求直線l的直角坐標方程和曲線C的普通方程;(2)已知點M(2,0),若直線l與曲線C相交于P、Q兩點,求的值.18.(12分)在平面直角坐標系中,曲線,曲線的參數方程為(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.(1)求曲線、的極坐標方程;(2)在極坐標系中,射線與曲線,分別交于、兩點(異于極點),定點,求的面積19.(12分)已知函數,.(1)當時,討論函數的零點個數;(2)若在上單調遞增,且求c的最大值.20.(12分)在中,角的對邊分別為,且滿足.(Ⅰ)求角的大小;(Ⅱ)若的面積為,,求和的值.21.(12分)如圖,在四棱錐中,底面為等腰梯形,,為等腰直角三角形,,平面底面,為的中點.(1)求證:平面;(2)若平面與平面的交線為,求二面角的正弦值.22.(10分)如圖,在中,,,點在線段上.(1)若,求的長;(2)若,,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
舉例判斷命題p與q的真假,再由復合命題的真假判斷得答案.【詳解】當時,故命題為假命題;記f(x)=ex﹣x的導數為f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上遞減,在(0,+∞)上遞增,∴f(x)>f(0)=1>0,即,故命題為真命題;∴是假命題故選D【點睛】本題考查復合命題的真假判斷,考查全稱命題與特稱命題的真假,考查指對函數的圖象與性質,是基礎題.2、C【解析】
根據復數的乘法運算以及純虛數的概念,可得結果.【詳解】∵為純虛數,∴且得,此時故選:C.【點睛】本題考查復數的概念與運算,屬基礎題.3、B【解析】
根據菱形中的邊角關系,利用余弦定理和數量積公式,即可求出結果.【詳解】如圖所示,菱形形的邊長為2,,∴,∴,∴,且,∴,故選B.【點睛】本題主要考查了平面向量的數量積和余弦定理的應用問題,屬于基礎題..4、C【解析】
試題分析:由題意得,自習時間不少于小時的頻率為,故自習時間不少于小時的頻率為,故選C.考點:頻率分布直方圖及其應用.5、D【解析】
根據已知得本題首先求出直線與雙曲線漸近線的交點,再利用,求出點,因為點在雙曲線上,及,代入整理及得,又已知,即可求出離心率.【詳解】由題意可知,代入得:,代入雙曲線方程整理得:,又因為,即可得到,故選:D.【點睛】本題主要考查的是雙曲線的簡單幾何性質和向量的坐標運算,離心率問題關鍵尋求關于,,的方程或不等式,由此計算雙曲線的離心率或范圍,屬于中檔題.6、C【解析】
令,則,,將指數式化成對數式得、后,然后取絕對值作差比較可得.【詳解】令,則,,,,,因此,.故選:C.【點睛】本題考查了利用作差法比較大小,同時也考查了指數式與對數式的轉化,考查推理能力,屬于中等題.7、A【解析】
解一元二次不等式化簡集合的表示,求解函數的定義域化簡集合的表示,根據可以得到集合、之間的關系,結合數軸進行求解即可.【詳解】,.因為,所以有,因此有.故選:A【點睛】本題考查了已知集合運算的結果求參數取值范圍問題,考查了解一元二次不等式,考查了函數的定義域,考查了數學運算能力.8、C【解析】
計算,,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,意在考查學生的計算能力.9、C【解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區內用水量超過15立方米的住戶戶數為,故選C10、A【解析】
可得集合,求出補集,再求出即可.【詳解】由,得,即,所以,所以.故選:A【點睛】本題考查了集合的補集和交集的混合運算,屬于基礎題.11、C【解析】
可分成兩類,一類是3個新教師與一個老教師結對,其他一新一老結對,第二類兩個老教師各帶兩個新教師,一個老教師帶一個新教師,分別計算后相加即可.【詳解】分成兩類,一類是3個新教師與同一個老教師結對,有種結對結對方式,第二類兩個老教師各帶兩個新教師,有.∴共有結對方式60+90=150種.故選:C.【點睛】本題考查排列組合的綜合應用.解題關鍵確定怎樣完成新老教師結對這個事情,是先分類還是先分步,確定方法后再計數.本題中有一個平均分組問題.計數時容易出錯.兩組中每組中人數都是2,因此方法數為.12、D【解析】
A項用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項利用線面垂直的判定定理;C項三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項用反證法說明三角形DMN不可能是直角三角形.【詳解】A項,用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項,如圖:當M、N分別在BB1、CC1上運動時,若滿足BM=CN,則線段MN必過正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項,當M、N分別在BB1、CC1上運動時,△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項,若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時DM,DN的長大于BB1,所以△DMN不可能為直角三角形,故錯誤.故選D【點睛】本題考查了命題真假判斷、棱柱的結構特征、空間想象力和思維能力,意在考查對線面、面面平行、垂直的判定和性質的應用,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由已知條件得出關于首項和公差的方程組,解出這兩個量,計算出,利用二次函數的基本性質求出的最大值及其對應的值,即可得解.【詳解】設等差數列的公差為,由,解得,.所以,當時,取得最大值,對任意都有成立,則為數列的最大值,因此,.故答案為:.【點睛】本題考查等差數列前項和最值的計算,一般利用二次函數的基本性質求解,考查計算能力,屬于中等題.14、【解析】
建系,設設,由可得,進一步得到的坐標,再利用數量積的坐標運算即可得到答案.【詳解】以A為坐標原點,AD為x軸建立如圖所示的直角坐標系,設,則,所以,,由,得,即,又,所以,故,,所以.故答案為:2【點睛】本題考查利用坐標法求向量的數量積,考查學生的運算求解能力,是一道中檔題.15、【解析】
,求得的通項,進而求得,得通項公式,利用等比數列求和即可.【詳解】由題為等差數列,∴,∴,∴,∴,故答案為【點睛】本題考查求等差數列數列通項,等比數列求和,熟記等差等比性質,熟練運算是關鍵,是基礎題.16、【解析】
由已知可知直線過拋物線的焦點,求出弦的中點到拋物線準線的距離,進一步得到弦的中點到直線的距離.【詳解】解:如圖,直線過定點,,而拋物線的焦點為,,弦的中點到準線的距離為,則弦的中點到直線的距離等于.故答案為:.【點睛】本題考查拋物線的簡單性質,考查直線與拋物線位置關系的應用,體現了數學轉化思想方法,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)l:,C方程為;(2)=【解析】
(1)直接利用轉換關系,把參數方程極坐標方程和直角坐標方程之間進行轉換.
(2)利用一元二次方程根和系數關系式的應用求出結果.【詳解】(1)曲線C的參數方程為(m為參數),兩式相加得到,進一步轉換為.直線l的極坐標方程為ρcos(θ+)=1,則轉換為直角坐標方程為.(2)將直線的方程轉換為參數方程為(t為參數),代入得到(t1和t2為P、Q對應的參數),所以,,所以=.【點睛】本題考查參數方程極坐標方程和直角坐標方程之間的轉換,一元二次方程根和系數關系式的應用,主要考查學生的運算能力和轉換能力及思維能力,屬于基礎題型.18、(1),;(2).【解析】
(1)先把參數方程化成普通方程,再利用極坐標的公式把普通方程化成極坐標方程;(2)先利用極坐標求出弦長,再求高,最后求的面積.【詳解】(1)曲線的極坐標方程為:,因為曲線的普通方程為:,曲線的極坐標方程為;(2)由(1)得:點的極坐標為,點的極坐標為,,點到射線的距離為的面積為.【點睛】本題考查普通方程、參數方程與極坐標方程之間的互化,同時也考查了利用極坐標方程求解面積問題,考查計算能力,屬于中等題.19、(1)見解析(2)2【解析】
(1)將代入可得,令,則,設,則轉化問題為與的交點問題,利用導函數判斷的圖象,即可求解;(2)由題可得在上恒成立,設,利用導函數可得,則,即,再設,利用導函數求得的最小值,則,進而求解.【詳解】(1)當時,,定義域為,由可得,令,則,由,得;由,得,所以在上單調遞增,在上單調遞減,則的最大值為,且當時,;當時,,由此作出函數的大致圖象,如圖所示.由圖可知,當時,直線和函數的圖象有兩個交點,即函數有兩個零點;當或,即或時,直線和函數的圖象有一個交點,即函數有一個零點;當即時,直線與函數的象沒有交點,即函數無零點.(2)因為在上單調遞增,即在上恒成立,設,則,①若,則,則在上單調遞減,顯然,在上不恒成立;②若,則,在上單調遞減,當時,,故,單調遞減,不符合題意;③若,當時,,單調遞減,當時,,單調遞增,所以,由,得,設,則,當時,,單調遞減;當時,,單調遞增,所以,所以,又,所以,即c的最大值為2.【點睛】本題考查利用導函數研究函數的零點問題,考查利用導函數求最值,考查運算能力與分類討論思想.20、(Ⅰ);(Ⅱ),.【解析】
(Ⅰ)運用正弦定理和二角和的正弦公式,化簡,即可求出角的大小;(Ⅱ)通過面積公式和,可以求出,這樣用余弦定理可以求出,用余弦定理求出,根據同角的三角函數關系,可以求出,這樣可以求出,最后利用二角差的余弦公式求出的值.【詳解】(Ⅰ)由正弦定理可知:,已知,所以,,所以有.(Ⅱ),由余弦定理可知:,,.【點睛】本題考查了正弦定理、余弦定理、面積公式、二倍角公式、二角差的余弦公式以及同角的三角函數關系,考查了運算能力.21、(1)證明見解析;(2)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年農業物聯網精準種植技術應用前景:產業發展趨勢與政策導向分析報告
- 上海海事大學工程熱力學課件第4章 理想氣體的熱力過程
- 上電院工程流體力學課件第9章 氣體的二維流動
- 湖南交通職業技術學院《流體力學(Ⅰ)》2023-2024學年第二學期期末試卷
- 遵義職業技術學院《競爭情報與商業數據分析》2023-2024學年第二學期期末試卷
- 郴州職業技術學院《大學英語讀寫譯三》2023-2024學年第二學期期末試卷
- 甘肅財貿職業學院《英語聽說寫譯綜合》2023-2024學年第二學期期末試卷
- 遼寧特殊教育師范高等專科學校《國際商務單證實務》2023-2024學年第二學期期末試卷
- 2024年度河南省護師類之社區護理主管護師考前沖刺試卷B卷含答案
- 情緒智力與教育技術融合的前景
- RPA技術在國有企業數智化轉型中的應用研究
- 藥事管理與藥物治療學委員會課件
- 旅游景區安全事故課件
- 《飼料添加劑學》課件
- (高清版)DB21∕T 2487-2015 中尺度對流天氣分析技術規范
- 公共設施環境保護管理方案
- 2025年廣東廣州市越秀區建設街招聘勞動保障監察協管員1人歷年高頻重點提升(共500題)附帶答案詳解
- 少年志不渝奮斗正當時
- 2025年中電科太力通信科技限公司招聘高頻重點提升(共500題)附帶答案詳解
- 《城鎮用水單位智慧節水系統技術要求》
- 2025年圍產期保健工作計劃
評論
0/150
提交評論