




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
甘肅省張掖四中學2023-2024學年九年級數學第一學期期末質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.一個半徑為2cm的圓的內接正六邊形的面積是()A.24cm2 B.6cm2 C.12cm2 D.8cm22.下列運算中,計算結果正確的是()A.a4?a=a4 B.a6÷a3=a2 C.(a3)2=a6 D.(ab)3=a3b3.在平面直角坐標系中,點M(1,﹣2)與點N關于原點對稱,則點N的坐標為()A.(﹣2,1) B.(1,﹣2) C.(2,-1) D.(-1,2)4.如圖,線段,點是線段的黃金分割點(),點是線段的黃金分割點(),點是線段的黃金分割點(),..,依此類推,則線段的長度是()A. B. C. D.5.二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,那么下列說法正確的是()A.a>0,b>0,c>0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c>06.如圖,在中,點C為弧AB的中點,若(為銳角),則()A. B. C. D.7.下列事件為必然事件的是()A.打開電視機,它正在播廣告B.a取任一個實數,代數式a2+1的值都大于0C.明天太陽從西方升起D.拋擲一枚硬幣,一定正面朝上8.如圖,如果∠BAD=∠CAE,那么添加下列一個條件后,仍不能確定△ABC∽△ADE的是()A.∠B=∠D B.∠C=∠AEDC.= D.=9.已知拋物線y=ax2+bx+c(a<0)與x軸交于點A(﹣1,0),與y軸的交點在(0,2),(0,3)之間(包含端點),頂點坐標為(1,n),則下列結論:①4a+2b<0;②﹣1≤a≤;③對于任意實數m,a+b≥am2+bm總成立;④關于x的方程ax2+bx+c=n﹣1有兩個不相等的實數根.其中結論正確的個數為()A.1個 B.2個 C.3個 D.4個10.如圖,D是等邊△ABC外接圓上的點,且∠CAD=20°,則∠ACD的度數為()A.20° B.30° C.40° D.45°二、填空題(每小題3分,共24分)11.若關于x的一元二次方程x2+2x+m﹣2=0有實數根,則m的值可以是__.(寫出一個即可)12.如圖,將△ABC繞著點C按順時針方向旋轉20°,B點落在B'位置,A點落在A'位置,若AC⊥A'B',則∠BAC的度數是__.
13.有4根細木棒,它們的長度分別是2cm、4cm、6cm、8cm.從中任取3根恰好能搭成一個三角形的概率是_____.14.如圖,在扇形中,,正方形的頂點是的中點,點在上,點在的延長線上,當正方形的邊長為時,則陰影部分的面積為_________.(結果保留)15.甲、乙兩人玩撲克牌游戲,游戲規則是:從牌面數字分別為5,6,7的三張撲克牌中,隨機抽取一張,放回后,再隨機抽取一張,若所抽取的兩張牌牌面數字的積為奇數,則甲獲勝;若所抽取的兩張牌牌面數字的積為偶數,則乙獲勝.這個游戲________.(填“公平”或“不公平”)16.現有5張正面分別標有數字0,1,2,3,4的不透明卡片,它們除數字不同外其余全部相同.現將它們背面朝上,洗勻后從中任取一張,將該卡片上的數字記為,則使得關于的一元二次方程有實數根,且關于的分式方程有整數解的概率為.17.關于的一元二次方程的一個根,則另一個根______.18.如圖,這是二次函數y=x2﹣2x﹣3的圖象,根據圖象可知,函數值小于0時x的取值范圍為_____.三、解答題(共66分)19.(10分)如圖,以△ABC的BC邊上一點O為圓心的圓,經過A、B兩點,且與BC邊交于點E,D為BE的下半圓弧的中點,連接AD交BC于F,若AC=FC.(1)求證:AC是⊙O的切線:(2)若BF=8,DF=,求⊙O的半徑;(3)若∠ADB=60°,BD=1,求陰影部分的面積.(結果保留根號)20.(6分)解方程:(1)2x2﹣7x+3=0(2)7x(5x+2)=6(5x+2)21.(6分)如圖,已知△ABC.(1)尺規作圖,畫出線段AB的垂直平分線(不寫作法,保留作圖痕跡);(2)設AB的垂直平分線與BA交于點D,與BC交于點E,連結AE.若∠B=40°,求∠BEA的度數.22.(8分)如圖所示,小吳和小黃在玩轉盤游戲,準備了兩個可以自由轉動的轉盤甲、乙,每個轉盤被分成面積相等的幾個扇形區域,并在每個扇形區域內標上數字,游戲規則:同時轉動兩個轉盤,當轉盤停止轉動后,指針所指扇形區域內的數字之和為4,5或6時,則小吳勝;否則小黃勝.(如果指針恰好指在分割線上,那么重轉一次,直到指針指向某一扇形區域為止)(1)這個游戲規則對雙方公平嗎?說說你的理由;(2)請你設計一個對雙方都公平的游戲規則.23.(8分)已知關于x的方程x2-(2k-1)x+k2-2k+3=0有兩個不相等的實數根.(1)求實數k的取值范圍.(2)設方程的兩個實數根分別為x1,x2,是否存在這樣的實數k,使得|x1|-|x2|=成立?若存在,求出這樣的k值;若不存在,請說明理由.24.(8分)已知是一張直角三角形紙片,其中,,小亮將它繞點逆時針旋轉后得到,交直線于點.(1)如圖1,當時,所在直線與線段有怎樣的位置關系?請說明理由.(2)如圖2,當,求為等腰三角形時的度數.25.(10分)某大學生利用暑假40天社會實踐參與了一家網店經營,了解到一種成本為20元/件的新型商品在第x天銷售的相關信息如下表所示.銷售量p(件)
P=50—x
銷售單價q(元/件)
當1≤x≤20時,
當21≤x≤40時,
(1)請計算第幾天該商品的銷售單價為35元/件?(2)求該網店第x天獲得的利潤y關于x的函數關系式.(3)這40天中該網店第幾天獲得的利潤最大?最大利潤是多少?26.(10分)雜技團進行雜技表演,演員從蹺蹺板右端A處彈跳到人梯頂端椅子B處,其身體看成一點的路線是拋物線的一部分,如圖所示.求演員彈跳離地面的最大高度;已知人梯高米,在一次表演中,人梯到起跳點A的水平距離是4米,問這次表演是否成功?請說明理由.
參考答案一、選擇題(每小題3分,共30分)1、B【解析】設O是正六邊形的中心,AB是正六邊形的一邊,OC是邊心距,則△OAB是正三角形,△OAB的面積的六倍就是正六邊形的面積解:如圖所示:設O是正六邊形的中心,AB是正六邊形的一邊,OC是邊心距,則∠AOB=60°,OA=OB=2cm,∴△OAB是正三角形,∴AB=OA=2cm,OC=OA?sin∠A=2×=(cm),∴S△OAB=AB?OC=×2×=(cm2),∴正六邊形的面積=6×=6(cm2).故選B.2、C【分析】根據冪的運算法則即可判斷.【詳解】A、a4?a=a5,故此選項錯誤;B、a6÷a3=a3,故此選項錯誤;C、(a3)2=a6,正確;D、(ab)3=a3b3,故此選項錯誤;故選C.【點睛】此題主要考查冪的運算,解題的關鍵是熟知冪的運算公式.3、D【解析】解:點M(1,﹣2)與點N關于原點對稱,點N的坐標為故選D.【點睛】本題考查關于原點對稱的點坐標特征:橫坐標和縱坐標都互為相反數.4、A【解析】根據黃金分割的定義得到,則,同理得到,,根據此規律得到.據此可得答案.【詳解】解:線段,點是線段的黃金分割點,,,點是線段的黃金分割點,,,.所以線段的長度是,故選:.【點睛】本題考查了黃金分割:把線段分成兩條線段和,且使是和的比例中項(即,叫做把線段黃金分割,點叫做線段的黃金分割點;其中,并且線段的黃金分割點有兩個.5、B【分析】利用拋物線開口方向確定a的符號,利用對稱軸方程可確定b的符號,利用拋物線與y軸的交點位置可確定c的符號.【詳解】∵拋物線開口向下,∴a<0,∵拋物線的對稱軸在y軸的右側,∴x=﹣>0,∴b>0,∵拋物線與y軸的交點在x軸上方,∴c>0,故選B.【點睛】本題考查了二次函數圖象與系數的關系:對于二次函數y=ax2+bx+c(a≠0),二次項系數a決定拋物線的開口方向和大小:當a>0時,拋物線向上開口;當a<0時,拋物線向下開口;一次項系數b和二次項系數a共同決定對稱軸的位置:當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右;常數項c決定拋物線與y軸交點位置:拋物線與y軸交于(0,c);拋物線與x軸交點個數由△決定:△=b2﹣4ac>0時,拋物線與x軸有2個交點;△=b2﹣4ac=0時,拋物線與x軸有1個交點;△=b2﹣4ac<0時,拋物線與x軸沒有交點.6、B【分析】連接BD,如圖,由于點C為弧AB的中點,根據圓周角定理得到∠BDC=∠ADC=α,然后根據圓內接四邊形的對角互補可用α表示出∠APB.【詳解】解:連接BD,如圖,∵點C為弧AB的中點,∴弧AC=弧BC,∴∠BDC=∠ADC=α,∴∠ADB=2α,∵∠APB+∠ADB=180°,∴∠APB=180°-2α.故選:B.【點睛】本題考查了弧、弦、圓心角的關系,以及圓內接四邊形的性質,熟練掌握圓的性質定理是解答本題的關鍵.7、B【分析】由題意直接根據事件發生的可能性大小進行判斷即可.【詳解】解:A、打開電視機,它正在播廣告是隨機事件;B、∵a2≥0,∴a2+1≥1,∴a取任一個實數,代數式a2+1的值都大于0是必然事件;C、明天太陽從西方升起是不可能事件;D、拋擲一枚硬幣,一定正面朝上是隨機事件;故選:B.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.注意掌握必然事件指在一定條件下,一定發生的事件.不可能事件是指在一定條件下,一定不發生的事件,不確定事件即隨機事件是指在一定條件下,可能發生也可能不發生的事件.8、C【分析】根據已知及相似三角形的判定方法對各個選項進行分析,從而得到最后答案.【詳解】BADCAE,A,B,D都可判定,選項C中不是夾這兩個角的邊,所以不相似.故選C.【點睛】考查相似三角形的判斷方法,掌握相似三角形常用的判定方法是解題的關鍵.9、C【解析】①由拋物線的頂點橫坐標可得出b=-2a,進而可得出4a+2b=0,結論①錯誤;
②利用一次函數圖象上點的坐標特征結合b=-2a可得出a=-,再結合拋物線與y軸交點的位置即可得出-1≤a≤-,結論②正確;
③由拋物線的頂點坐標及a<0,可得出n=a+b+c,且n≥ax2+bx+c,進而可得出對于任意實數m,a+b≥am2+bm總成立,結論③正確;
④由拋物線的頂點坐標可得出拋物線y=ax2+bx+c與直線y=n只有一個交點,將直線下移可得出拋物線y=ax2+bx+c與直線y=n-1有兩個交點,進而可得出關于x的方程ax2+bx+c=n-1有兩個不相等的實數根,結合④正確.【詳解】:①∵拋物線y=ax2+bx+c的頂點坐標為(1,n),
∴-=1,
∴b=-2a,
∴4a+2b=0,結論①錯誤;
②∵拋物線y=ax2+bx+c與x軸交于點A(-1,0),
∴a-b+c=3a+c=0,
∴a=-.
又∵拋物線y=ax2+bx+c與y軸的交點在(0,2),(0,3)之間(包含端點),
∴2≤c≤3,
∴-1≤a≤-,結論②正確;
③∵a<0,頂點坐標為(1,n),
∴n=a+b+c,且n≥ax2+bx+c,
∴對于任意實數m,a+b≥am2+bm總成立,結論③正確;
④∵拋物線y=ax2+bx+c的頂點坐標為(1,n),
∴拋物線y=ax2+bx+c與直線y=n只有一個交點,
又∵a<0,
∴拋物線開口向下,
∴拋物線y=ax2+bx+c與直線y=n-1有兩個交點,
∴關于x的方程ax2+bx+c=n-1有兩個不相等的實數根,結合④正確.
故選C.【點睛】本題考查了二次函數圖象與系數的關系、拋物線與x軸的交點以及二次函數的性質,觀察函數圖象,逐一分析四個結論的正誤是解題的關鍵.10、C【分析】根據圓內接四邊形的性質得到∠D=180°-∠B=120°,根據三角形內角和定理計算即可.【詳解】∴∠B=60°,∵四邊形ABCD是圓內接四邊形,∴∠D=180°?∠B=120°,∴∠ACD=180°?∠DAC?∠D=40°,故選C.二、填空題(每小題3分,共24分)11、3.【分析】根據根的判別式即可求出答案.【詳解】由題意可知:△=4﹣4(m﹣2)≥0,∴m≤3.故答案為:3.【點睛】考核知識點:一元二次方程根判別式.熟記根判別式是關鍵.12、70°【解析】由旋轉的角度易得∠ACA′=20°,若AC⊥A'B',則∠A′、∠ACA′互余,由此求得∠ACA′的度數,由于旋轉過程并不改變角的度數,因此∠BAC=∠A′,即可得解.【詳解】解:由題意知:∠ACA′=20°;
若AC⊥A'B',則∠A′+∠ACA′=90°,
得:∠A′=90°-20°=70°;
由旋轉的性質知:∠BAC=∠A′=70°;
故∠BAC的度數是70°.故答案是:70°【點睛】本題考查旋轉的性質:旋轉變化前后,對應點到旋轉中心的距離相等以及每一對對應點與旋轉中心連線所構成的旋轉角相等.要注意旋轉的三要素:①定點-旋轉中心;②旋轉方向;③旋轉角度.13、【分析】根據題意列舉出所有4種等可能的結果數,再根據題意得出能夠構成三角形的結果數,最后根據概率公式即可求解.【詳解】從中任取3根共有4種等可能的結果數,它們為2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一個三角形為4、6、8,所以恰好能搭成一個三角形的概率=.故答案為.【點睛】本題考查列表法或樹狀圖法和三角形三邊關系,解題的關鍵是通過列表法或樹狀圖法展示出所有等可能的結果數及求出構成三角形的結果數.14、【分析】連結OC,根據等腰三角形的性質可求OC的長,根據題意可得出陰影部分的面積=扇形BOC的面積-三角形ODC的面積,依此列式計算即可求解.【詳解】解:連接OC,∵在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,∴∠COD=45°,∴OC=CD=4,∴陰影部分的面積=扇形BOC的面積-三角形ODC的面積=-×4×4=4π-1,故答案為4π-1.【點睛】考查了正方形的性質和扇形面積的計算,解題的關鍵是得到扇形半徑的長度.15、不公平.【分析】先根據題意畫出樹狀圖,然后根據概率公式求解即可.【詳解】畫出樹狀圖如下:共有9種情況,積為奇數有4種情況所以,P(積為奇數)=即甲獲勝的概率是,乙獲勝的概率是所以這個游戲不公平.【點睛】解題的關鍵是熟練掌握概率的求法:概率=所求情況數與總情況數的比值.16、【詳解】首先根據一元二次方程有實數解可得:4-4(a-2)≥0可得:a≤3,則符合條件的a有0,1,2,3四個;解分式方程可得:x=,∵x≠2,則a≠1,a≠2,綜上所述,則滿足條件的a為0和3,則P=.考點:(1)、概率;(2)、分式方程的解.17、1【分析】設方程的另一個根為x2,根據根與系數的關系可得出4+x2=4,解之即可得出結論.【詳解】設方程的另一個根為x2,根據題意得:4+x2=4,∴x2=1.故答案為:1.【點睛】本題考查了根與系數的關系,牢記兩根之和等于、兩根之積等于是解題的關鍵.18、﹣1<x<1.【分析】根據圖象直接可以得出答案【詳解】如圖,從二次函數y=x2﹣2x﹣1的圖象中可以看出函數值小于0時x的取值范圍為:﹣1<x<1【點睛】此題重點考察學生對二次函數圖象的理解,抓住圖象性質是解題的關鍵三、解答題(共66分)19、(1)證明見解析;(2)6;(3).【解析】(1)連接OA、OD,如圖,利用垂徑定理的推論得到OD⊥BE,再利用CA=CF得到∠CAF=∠CFA,然后利用角度的代換可證明∠OAD+∠CAF=,則OA⊥AC,從而根據切線的判定定理得到結論;(2)設⊙0的半徑為r,則OF=8-r,在Rt△ODF中利用勾股定理得到,然后解方程即可;(3)先證明△BOD為等腰直角三角形得到OB=,則OA=,再利用圓周角定理得到∠AOB=2∠ADB=,則∠AOE=,接著在Rt△OAC中計算出AC,然后用一個直角三角形的面積減去一個扇形的面積去計算陰影部分的面積.【詳解】(1)證明:連接OA、OD,如圖,∵D為BE的下半圓弧的中點,∴OD⊥BE,∴∠ODF+∠OFD=90°,∵CA=CF,∴∠CAF=∠CFA,而∠CFA=∠OFD,∴∠ODF+∠CAF=90°,∵OA=OD,∴∠ODA=∠OAD,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切線;(2)解:設⊙O的半徑為r,則OF=8﹣r,在Rt△ODF中,(8﹣r)2+r2=()2,解得r1=6,r2=2(舍去),即⊙O的半徑為6;(3)解:∵∠BOD=90°,OB=OD,∴△BOD為等腰直角三角形,∴OB=BD=,∴OA=,∵∠AOB=2∠ADB=120°,∴∠AOE=60°,在Rt△OAC中,AC=OA=,∴陰影部分的面積=??﹣=.【點睛】本題主要考查圓、圓的切線及與圓相關的不規則陰影的面積,需綜合運用各知識求解.20、(1);(2)【分析】(1)方程左邊的多項式利用十字相乘法分解因式后,利用兩數相乘積為0,兩因式中至少有一個為0轉化為兩個一元一次方程來求解;(2)方程右邊看做一個整體,移項到左邊,提取公因式化為積的形式,利用兩數相乘積為0,兩因式中至少有一個為0轉化為兩個一元一次方程來求解.【詳解】解:(1)2x2﹣7x+3=0,分解因式得:(2x﹣1)(x﹣3)=0,可得2x﹣1=0或x﹣3=0,解得:x1=,x2=3;(2)7x(5x+2)=6(5x+2),移項得:7x(5x+2)﹣6(5x+2)=0,分解因式得:(7x﹣6)(5x+2)=0,可得7x﹣6=0或5x+2=0,解得:x1=,x2=﹣.【點睛】考核知識點:解一元二次方程.掌握基本方法是關鍵.21、(1)見解析;(2)100°【分析】(1)根據垂直平分線的尺規作圖法,即可;(2)根據垂直平分線的性質定理,可得AE=BE,進而即可求出答案.【詳解】(1)線段AB的垂直平分線如圖所示;(2)∵DE是AB的垂直平分線,∴AE=BE,∴∠BAE=∠B=40°,∴∠BEA=180°﹣∠B﹣∠BAE,=180°﹣40°﹣40°=100°.答:∠BEA的度數為100°.【點睛】本題主要考查尺規作中垂線以及中垂線的性質定理,掌握中垂線的性質定理是解題的關鍵.22、(1)不公平(2)【解析】解:列表或畫樹狀圖正確,轉盤甲
轉盤乙
1
2
3
4
5
1
(1,1)和為2
(2,1)和為3
(3,1)和為4
(4,1)和為5
(5,1)和為6
2
(1,2)和為3
(2,2)和為4
(3,2)和為5
(4,2)和為6
(5,2)和為7
3
(1,3)和為4
(2,3)和為5
(3,3)和為6
(4,3)和為7
(5,3)和為8
4
(1,4)和為5
(2,4)和為6
(3,4)和為7
(4,4)和為8
(5,4)和為9
(1)數字之和一共有20種情況,和為4,5或6的共有11種情況,∵P(小吳勝)=>P(小黃勝)=,∴這個游戲不公平;(2)新的游戲規則:和為奇數小吳勝,和為偶數小黃勝.理由:數字和一共有20種情況,和為偶數、奇數的各10種情況,∴P(小吳勝)=P(小黃勝)=.23、(1)k>;(2)1.【分析】(1)由方程有兩個不相等的實數根知△>2,列出關于k的不等式求解可得;(2)由韋達定理知x1+x2=2k﹣1,x1x2=k2﹣2k+2=(k﹣1)2+1>2,可以判斷出x1>2,x2>2.將原式兩邊平方后把x1+x2、x1x2代入得到關于k的方程,求解可得.【詳解】解:(1)由題意知△>2,∴[﹣(2k﹣1)]2﹣1×1×(k2﹣2k+2)>2,整理得:1k﹣7>2,解得:k;(2)由題意知x1+x2=2k﹣1,x1x2=k2﹣2k+2=(k+1)2+1>2,∴x1,x2同號.∵x1+x2=2k﹣1>=,∴x1>2,x2>2.∵|x1|﹣|x2|,∴x1﹣x2,∴x12﹣2x1x2+x22=5,即(x1+x2)2﹣1x1x2=5,代入得:(2k﹣1)2﹣1(k2﹣2k+2)=5,整理,得:1k﹣12=2,解得:k=3.【點睛】本題考查了根與系數的關系及根的判別式,熟練掌握判別式的值與方程的根之間的關系及韋達定理是解題的關鍵.24、(1)BD與FM互相垂直,理由見解析;(2)β的度數為30°或75°或120°.【分析】(1)由題意設直線BD與FM相交于點N,即可根據旋轉的性質判斷直線BD與線段MF垂直;(2)根據旋轉的性質得∠MAD=β,分類討論:當KA=KD時,根據等腰三角形的性質得∠KAD=∠D=30°,即β=30°;當DK=DA時,根據等腰三角形的性質得∠DKA=∠DAK,然后根據三角形內角和可計算出∠DAK=75°,即β=75°;當AK=AD時,根據等腰三角形的性質得∠AKD=∠D=30°,然后根據三角形內角和可計算出∠KAD=120°,即β=120°.【詳解】解:(1)BD與FM互相垂直,理由如下設此時直線BD與FM相交于點N∵∠DAB=90°,∠D=30°∴∠ABD=90°-∠D=60°,∴∠NBM=∠ABD=6
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年安全生產述職報告范例(六)
- 人教版三年級語文下冊詞語運用
- 建筑用塑粉項目投資可行性研究分析報告(2024-2030版)
- 快遞員和保安合同協議書
- 2025年超市購物車項目分析評價報告
- 西藏吊車租用合同協議書
- 科技企業融資貸款申請審批
- 睡衣企業提升個性化服務策略制定與實施手冊
- 如何選用牛羊驅蟲藥物
- 鋼琴家教合同協議書范本
- 過敏性休克的急救及處理流程教材課件(28張)
- 交通協管員勞務外包服務方案
- 頂管工程頂進記錄表
- 滬教牛津版七年級上冊英語全冊教案
- 先天性心臟病患兒護理查房
- 2022年山東省威海市中考數學試題及答案解析
- (完整版)農業主要知識點
- 高級財務管理試題及答案
- 醫院寧群腦高灌注綜合癥監測和防治
- T∕CSEA 1-2018 鋅鋁涂層 技術條件
- 射線檢測操作指導書
評論
0/150
提交評論