2024屆山東省德州市慶云二中學數學九年級第一學期期末質量跟蹤監視模擬試題含解析_第1頁
2024屆山東省德州市慶云二中學數學九年級第一學期期末質量跟蹤監視模擬試題含解析_第2頁
2024屆山東省德州市慶云二中學數學九年級第一學期期末質量跟蹤監視模擬試題含解析_第3頁
2024屆山東省德州市慶云二中學數學九年級第一學期期末質量跟蹤監視模擬試題含解析_第4頁
2024屆山東省德州市慶云二中學數學九年級第一學期期末質量跟蹤監視模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆山東省德州市慶云二中學數學九年級第一學期期末質量跟蹤監視模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.在平面直角坐標系中,△ABC與△A1B1C1位似,位似中心是原點O,若△ABC與△A1B1C1的相似比為1:2,且點A的坐標是(1,3),則它的對應點A1的坐標是()A.(-3,-1) B.(-2,-6) C.(2,6)或(-2,-6) D.(-1,-3)2.在奔馳、寶馬、豐田、三菱等汽車標志圖形中,為中心對稱圖形的是()A.B.C.D.3.二次函數圖象如圖所示,下列結論:①;②;③;④;⑤有兩個相等的實數根,其中正確的有()A.1個 B.2個 C.3個 D.4個4.拋物線y=2(x-1)2-6的對稱軸是().A.x=-6 B.x=-1 C.x= D.x=15.如圖,在平面直角坐標系內,正方形OABC的頂點A,B在第一象限內,且點A,B在反比例函數y=(k≠0)的圖象上,點C在第四象限內.其中,點A的縱坐標為2,則k的值為()A.2﹣2 B.2﹣2 C.4﹣4 D.4﹣46.如圖是由4個大小相同的立方塊搭成的幾何體,這個幾何體的主視圖是()A. B. C. D.7.如圖,圓內接四邊形ABCD的邊AB過圓心O,過點C的切線與邊AD所在直線垂直于點M,若∠ABC=55°,則∠ACD等于()A.20° B.35° C.40° D.55°8.若關于的方程有兩個相等的實數根,則的值是()A.-1 B.-3 C.3 D.69.一元二次方程x2-4x-1=0配方可化為()A.(x+2)2=3 B.(x+2)2=5 C.(x-2)2=3 D.(x-2)2=510.如圖,AB是⊙O的直徑,弦CD交AB于點E,且AE=CD=8,∠BAC=∠BOD,則⊙O的半徑為A. B.5 C.4 D.311.如圖,把一張圓形紙片和一張含45°角的扇形紙片如圖所示的方式分別剪得一個正方形,如果所剪得的兩個正方形邊長都是1,那么圓形紙片和扇形紙片的面積比是()A.4:5 B.2:5 C.:2 D.:12.在平面直角坐標系中,一個智能機器人接到如下指令:從原點O出發,按向右,向上,向右,向下的方向依次不斷移動,每次移動1m.其行走路線如圖所示,第1次移動到A1,第2次移動到A2,…,第n次移動到An.則△OA2A2018的面積是()A.504m2 B.m2 C.m2 D.1009m2二、填空題(每題4分,共24分)13.在一個不透明的盒子中裝有6個白球,x個黃球,它們除顏色不同外,其余均相同.若從中隨機摸出一個球,摸到白球的概率為,則x=_______.14.已知二次函數的圖象經過原點,則的值為_______.15.如圖,10個邊長為1的正方形擺放在平面直角坐標系中,經過A(1,0)點的一條直線1將這10個正方形分成面積相等的兩部分,則該直線的解析式為_____.16.已知二次函數,當-1≤x≤4時,函數的最小值是__________.17.將一個含45°角的三角板,如圖擺放在平面直角坐標系中,將其繞點順時針旋轉75°,點的對應點恰好落在軸上,若點的坐標為,則點的坐標為____________.18.如圖所示的點陣中,相鄰的四個點構成正方形,小球只在矩形內自由滾動時,則小球停留在陰影區域的概率為___________.三、解答題(共78分)19.(8分)如圖,在Rt△ABC中,∠C=90°,AB=10cm,BC=6cm.動點P,Q從點A同時出發,點P沿AB向終點B運動;點Q沿AC→CB向終點B運動,速度都是1cm/s.當一個點到達終點時,另一個點同時停止運動.設點P運動的時間為t(s),在運動過程中,點P,點Q經過的路線與線段PQ圍成的圖形面積為S(cm2).(1)AC=_________cm;(2)當點P到達終點時,BQ=_______cm;(3)①當t=5時,s=_________;②當t=9時,s=_________;(4)求S與t之間的函數解析式.20.(8分)對于平面直角坐標系xOy中的點P和圖形G,給出如下定義:將點P沿向右或向上的方向平移一次,平移距離為d(d>0)個長度單位,平移后的點記為P′,若點P′在圖形G上,則稱點P為圖形G的“達成點”.特別地,當點P在圖形G上時,點P是圖形G的“達成點”.例如,點P(﹣1,0)是直線y=x的“達成點”.已知⊙O的半徑為1,直線l:y=﹣x+b.(1)當b=﹣3時,①在O(0,0),A(﹣4,1),B(﹣4,﹣1)三點中,是直線l的“達成點”的是:_____;②若直線l上的點M(m,n)是⊙O的“達成點”,求m的取值范圍;(2)點P在直線l上,且點P是⊙O的“達成點”.若所有滿足條件的點P構成一條長度不為0的線段,請直接寫出b的取值范圍.21.(8分)已知:如圖,AE∥CF,AB=CD,點B、E、F、D在同一直線上,∠A=∠C.求證:(1)AB∥CD;(2)BF=DE.22.(10分)如圖,拋物線的頂點為,且拋物線與直線相交于兩點,且點在軸上,點的坐標為,連接.(1),,(直接寫出結果);(2)當時,則的取值范圍為(直接寫出結果);(3)在直線下方的拋物線上是否存在一點,使得的面積最大?若存在,求出的最大面積及點坐標.23.(10分)某校綜合實踐小組要對一幢建筑物的高度進行測量.如圖,該小組在一斜坡坡腳處測得該建筑物頂端的仰角為,沿斜坡向上走到達處,(即)測得該建筑物頂端的仰角為.已知斜坡的坡度,請你計算建筑物的高度(即的長,結果保留根號).24.(10分)北京市第十五屆人大常委會第十六次會議表決通過《關于修改<北京市生活垃圾管理條例>的決定》,規定將生活垃圾分為廚余垃圾、可回收物、有害垃圾、其它垃圾四大基本品類,修改后的條例將于2020年5月1日實施.某小區決定在2020年1月到3月期間在小區內設置四種垃圾分類廂:廚余垃圾、可回收物、有害垃圾、其它垃圾,分別記為A、B、C、D,進行垃圾分類試投放,以增強居民垃圾分類意識.(1)小明家按要求將自家的生活垃圾分成了四類,小明從分好類的垃圾中隨機拿了一袋,并隨機投入一個垃圾箱中,請用畫樹狀圖的方法求垃圾投放正確的概率;(2)為調查居民生活垃圾分類投放情況,現隨機抽取了該小區四類垃圾箱中共1000千克生活垃圾,數據統計如下(單位:千克):ABCD廚余垃圾4001004060可回收物251402015有害垃圾5206015其它垃圾25152040求“廚余垃圾”投放正確的概率.25.(12分)解下列方程:(1)x2﹣6x+9=0;(2)x2﹣4x=12;(3)3x(2x﹣5)=4x﹣1.26.證明相似三角形對應角平分線的比等于相似比.已知:如圖,△ABC∽△A′B′C′,相似比為k,.求證.(先填空,再證明)證明:

參考答案一、選擇題(每題4分,共48分)1、C【解析】根據如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或,即可求出答案.【詳解】由位似變換中對應點坐標的變化規律得:點的對應點的坐標是或,即點的坐標是或故選:C.【點睛】本題考查了位似變換中對應點坐標的變化規律,理解位似的概念,并熟記變化規律是解題關鍵.2、B【解析】試題分析:根據中心對稱圖形的概念,A、C、D都不是中心對稱圖形,是中心對稱圖形的只有B.故選B.考點:中心對稱圖形3、D【分析】根據圖象與x軸有兩個交點可判定①;根據對稱軸為可判定②;根據開口方向、對稱軸和與y軸的交點可判定③;根據當時以及對稱軸為可判定④;利用二次函數與一元二次方程的聯系可判定⑤.【詳解】解:①根據圖象與x軸有兩個交點可得,此結論正確;②對稱軸為,即,整理可得,此結論正確;③拋物線開口向下,故,所以,拋物線與y軸的交點在y軸的正半軸,所以,故,此結論錯誤;④當時,對稱軸為,所以當時,即,此結論正確;⑤當時,只對應一個x的值,即有兩個相等的實數根,此結論正確;綜上所述,正確的有4個,故選:D.【點睛】本題考查二次函數圖象與系數的關系、二次函數與一元二次方程,掌握二次函數的圖象與性質是解題的關鍵.4、D【解析】根據拋物線的頂點式,直接得出結論即可.【詳解】解:∵拋物線y=2(x-1)2-6,

∴拋物線的對稱軸是x=1.

故選D.【點睛】本題考查了二次函數的性質,要熟悉二次函數的頂點式:y=a(x-h)2+k(a≠0),其頂點坐標為(h,k),對稱軸為x=h.5、B【分析】作AE⊥x軸于E,BF∥x軸,交AE于F,根據圖象上點的坐標特征得出A(,2),證得△AOE≌△BAF(AAS),得出OE=AF,AE=BF,即可得到B(+2,2-),根據系數k的幾何意義得到k=(+2)(2-),解得即可.【詳解】解:作AE⊥x軸于E,BF//x軸,交AE于F,∵∠OAE+∠BAF=90°=∠OAE+∠AOE,∴∠BAF=∠AOE,在△AOE和△BAF中∴△AOE≌△BAF(AAS),∴OE=AF,AE=BF,∵點A,B在反比例函數y=(k≠0)的圖象上,點A的縱坐標為2,∴A(,2),∴B(+2,2﹣),∴k=(+2)(2﹣),解得k=﹣2±2(負數舍去),∴k=2﹣2,故選:B.【點睛】本題考查了正方形的性質,全等三角形的性質與判定,反比例函數的圖象與性質,關鍵是構造全等三角形.6、A【分析】主視圖:從物體正面觀察所得到的圖形,由此觀察即可得出答案.【詳解】從物體正面觀察可得,左邊第一列有2個小正方體,第二列有1個小正方體.故答案為A.【點睛】本題考查三視圖的知識,主視圖是從物體的正面看得到的視圖.7、A【解析】試題解析:∵圓內接四邊形ABCD的邊AB過圓心O,∴∠ADC+∠ABC=180°,∠ACB=90°,∴∠ADC=180°﹣∠ABC=125°,∠BAC=90°﹣∠ABC=35°,∵過點C的切線與邊AD所在直線垂直于點M,∴∠MCA=∠ABC=55°,∠AMC=90°,∵∠ADC=∠AMC+∠DCM,∴∠DCM=∠ADC﹣∠AMC=35°,∴∠ACD=∠MCA﹣∠DCM=55°﹣35°=20°.故選A.8、C【分析】根據方程有兩個相等的實數根,判斷出根的判別式為0,據此求解即可.【詳解】∵關于的方程有兩個相等的實數根,

∴,

解得:.故選:C.【點睛】本題考查了一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數根;(3)△<0?方程沒有實數根.9、D【分析】移項,配方,即可得出選項.【詳解】x2?4x?1=0,x2?4x=1,x2?4x+4=1+4,(x?2)2=5,故選:D.【點睛】本題考查了解一元二次方程的應用,能正確配方是解此題的關鍵.10、B【解析】試題分析:∵∠BAC=∠BOD,∴.∴AB⊥CD.∵AE=CD=8,∴DE=CD=1.設OD=r,則OE=AE﹣r=8﹣r,在RtODE中,OD=r,DE=1,OE=8﹣r,∴OD2=DE2+OE2,即r2=12+(8﹣r)2,解得r=2.故選B.11、A【分析】首先分別求出扇形和圓的半徑,再根據面積公式求出面積,最后求出比值即可.【詳解】如圖1,連接OD,∵四邊形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=1,∵∠AOB=41°,∴OB=AB=1,由勾股定理得:,∴扇形的面積是;如圖2,連接MB、MC,∵四邊形ABCD是⊙M的內接四邊形,四邊形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=41°,∵BC=1,∴MC=MB=,∴⊙M的面積是,∴扇形和圓形紙板的面積比是,即圓形紙片和扇形紙片的面積比是4:1.故選:A.【點睛】本題考查了正方形性質,圓內接四邊形性質,扇形的面積公式的應用,解此題的關鍵是求出扇形和圓的面積,題目比較好,難度適中.12、A【分析】由OA4n=2n知OA2017=+1=1009,據此得出A2A2018=1009-1=1008,據此利用三角形的面積公式計算可得.【詳解】由題意知OA4n=2n,∴OA2016=2016÷2=1008,即A2016坐標為(1008,0),∴A2018坐標為(1009,1),則A2A2018=1009-1=1008(m),∴=A2A2018×A1A2=×1008×1=504(m2).故選:A.【點睛】本題主要考查點的坐標的變化規律,解題的關鍵是根據圖形得出下標為4的倍數時對應長度即為下標的一半,據此可得.二、填空題(每題4分,共24分)13、1【分析】直接以概率求法得出關于x的等式進而得出答案.【詳解】解:由題意得:,解得,故答案為:1.【點睛】本題考查了概率的意義,正確把握概率的求解公式是解題的關鍵.14、2;【分析】本題中已知了二次函數經過原點(1,1),因此二次函數與y軸交點的縱坐標為1,即m(m-2)=1,由此可求出m的值,要注意二次項系數m不能為1.【詳解】根據題意得:m(m?2)=1,∴m=1或m=2,∵二次函數的二次項系數不為零,所以m=2.故填2.【點睛】本題考查二次函數圖象上點的坐標特征,需理解二次函數與y軸的交點的縱坐標即為常數項的值.15、y=x-,【解析】根據題意即可畫出相應的輔助線,從而可以求得相應的函數解析式.【詳解】將由圖中1補到2的位置,∵10個正方形的面積之和是10,∴梯形ABCD的面積只要等于5即可,∴設BC=4-x,則,解得,x=,∴點B的坐標為,設過點A和點B的直線的解析式為y=kx+b,,解得,,即過點A和點B的直線的解析式為y=.故答案為:y=.【點睛】本題考查待定系數法求一次函數解析式,正方形的性質.16、-1【分析】根據題意和二次函數的性質可以求得當?1≤x≤4時,函數的最小值.【詳解】解:∵二次函數,∴該函數的對稱軸是直線x=1,當x>1時,y隨x的增大而增大,當x<1時,y隨x的增大而減小,∵?1≤x≤4,∴當x=1時,y取得最小值,此時y=-1,故答案為:-1.【點睛】本題考查二次函數的性質、二次函數的最值,解答本題的關鍵是明確題意,利用二次函數的性質解答.17、【分析】先求得∠ACO=60°,得出∠OAC=30°,求得AC=2OC=2,解等腰直角三角形求得直角邊為,從而求出B′的坐標.【詳解】解:∵∠ACB=45°,∠BCB′=75°,

∴∠ACB′=120°,

∴∠ACO=60°,

∴∠OAC=30°,

∴AC=2OC,

∵點C的坐標為(1,0),

∴OC=1,

∴AC=2OC=2,

∵△ABC是等腰直角三角形,∴B′點的坐標為【點睛】此題主要考查了旋轉的性質及坐標與圖形變換,同時也利用了直角三角形性質,首先利用直角三角形的性質得到有關線段的長度,即可解決問題.18、【分析】分別求出矩形ABCD的面積和陰影部分的面積即可確定概率.【詳解】設每相鄰兩個點之間的距離為a則矩形ABCD的面積為而利用梯形的面積公式和圖形的對稱性可知陰影部分的面積為∴小球停留在陰影區域的概率為故答案為【點睛】本題主要考查隨機事件的概率,能夠求出陰影部分的面積是解題的關鍵.三、解答題(共78分)19、(1)8;(2)4;(3)①,②22;(4)【分析】(1)根據勾股定理求解即可;(2)先求出點P到達中點所需時間,則可知點Q運動路程,易得CQ長,;(3)①作PD⊥AC于D,可證△APD∽△ABC,利用相似三角形的性質可得PD長,根據面積公式求解即可;②作PE⊥AC于E,可證△PBE∽△ABC,利用相似三角形的性質可得PE長,用可得s的值;(4)當0<t≤8時,作PD⊥AC于D,可證△APD∽△ABC,可用含t的式子表示出PD的長,利用三角形面積公式可得s與t之間的函數解析式;當8<t≤10時,作PE⊥AC于E,可證△PBE∽△ABC,利用相似三角形的性質可用含t的式子表示出PE長,用可得s與t之間的函數解析式.【詳解】解:(1)在Rt△ABC中,由勾股定理得(2)設點P運動到終點所需的時間為t,路程為AB=10cm,則點Q運動的路程為10cm,即cm所以當點P到達終點時,BQ=4cm.(3)①作PD⊥AC于D,則∵∠A=∠A.∠ADP=∠C=90°,∴△APD∽△ABC.∴.即∴.∴.②如圖,作PE⊥AC于E,則∵∠B=∠B.∠BEP=∠C=90°,∴△PBE∽△ABC.∴.即.∴.∴.(4)當0<t≤8時,如圖①.作PD⊥AC于D.∵∠A=∠A.∠ADP=∠C=90°,∴△APD∽△ABC.∴.即.∴.∴.當8<t≤10時,如圖②.作PE⊥AC于E.∵∠B=∠B.∠BEP=∠C=90°,∴△PBE∽△ABC.∴.即.∴.∴.綜上所述:【點睛】本題考查了二次函數在三角形動點問題中的應用,涉及的知識點有勾股定理、相似三角形的判定與性質,靈活的應用相似三角形對應線段成比例的性質求線段長是解題的關鍵.20、(1)①A,B;②﹣4≤m≤﹣2或﹣1≤m≤1;(2)﹣2≤b<.【分析】(1)①根據“達成點”的定義即可解決問題.②過點(0,1)和點(0,﹣1)作x軸的平行線分別交直線l于M1,M2,過點(1,0)和點(﹣1,0)作y軸的平行線分別交直線l于M3,M4,由此即可判斷.(2)當M2與M3重合,坐標為(﹣1,﹣1)時,﹣1=1+b,可得b=﹣2;當直線l與⊙O相切時,設切點為E,交y軸于F,求出點E的坐標,即可判斷.【詳解】(1)①∵b=﹣3時,直線l:y=﹣x﹣3,∴直線l與x軸的交點為:(﹣3,0),直線l與y軸的交點為:(0,﹣3),∴O(0,0)在直線l的上方,∴O(0,0)不是直線l的“達成點”,∵當x=﹣4時,y=4﹣3=1,∴點A(﹣4,1)在直線l上,∴點A是直線l的“達成點”,∵點B(﹣4,﹣1)在直線l的下方,把點B(﹣4,﹣1)向上平移2個長度單位為(﹣4,1),∴點B是直線l的“達成點”,故答案為:A,B;②設直線l:y=﹣x﹣3,分別與直線y=1、y=﹣1、x=﹣1、x=1依次交于點M1、M2、M3、M4,如圖1所示:則點M1,M2,M3,M4的橫坐標分別為﹣4、﹣2、﹣1、1,線段M1M2上的點向右的方向平移與⊙O能相交,線段M3M4上的點向上的方向平移與⊙O能相交,∴線段M1M2和線段M3M4上的點是⊙O的“達成點”,∴m的取值范圍是﹣4≤m≤﹣2或﹣1≤m≤1;(2)如圖2所示:當M2與M3重合,坐標為(﹣1,﹣1)時,﹣1=1+b,∴b=﹣2;②當直線l與⊙O相切時,設切點為E,交y軸于F.由題意,在Rt△OEF中,∠OEF=90°,OE=1,∠EOF=45°,∴△OEF是等腰直角三角形,∴OF=OE=;觀察圖象可知滿足條件的b的值為﹣2≤b<.【點睛】本題是圓的綜合題,考查了直線與圓的位置關系,點P為圖形G的“達成點”的定義、等腰直角三角形的判定與性質、切線的性質等知識,解題的關鍵是理解題意,屬于中考壓軸題.21、(1)見解析;(2)見解析.【解析】(1)由△ABE≌△CDF可得∠B=∠D,就可得到AB∥CD;(2)要證BF=DE,只需證到△ABE≌△CDF即可.【詳解】解:(1)∵AB∥CD,∴∠B=∠D.在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴∠B=∠D,∴AB∥CD;(2)∵△ABE≌△CDF,∴BE=DF.∴BE+EF=DF+EF,∴BF=DE.【點睛】此題考查全等三角形的判定與性質,解題關鍵在于掌握判定定理.22、(1)1,-1,1;(2);(3)最大值為,點.【分析】(1)將代入求得k值,求得點A的坐標,再將A、B的坐標代入即可求得答案;(2)在圖象上找出拋物線在直線下方自變量的取值范圍即可;(3)設點P的坐標為,則點Q的坐標為,求得的長,利用三角形面積公式得到,然后根據二次函數的性質即可解決問題.【詳解】(1)∵直線經過點,∴,解得:,∵直線與x軸交于點A,令,則,點A的坐標為,∵拋物線與直線相交于兩點,∴,解得:,故答案為:,,;(2)∵拋物線與直線相交于A,兩點,觀察圖象,拋物線在直線下方時,,∴當時,則的取值范圍為:,故答案為:;(3)過點P作y軸的平行線交直線于點Q,設點P的坐標為,則點Q的坐標為,∴,,∴,當時,的面積有最大值為,此時P點坐標為;故答案為:面積有最大值為,P點坐標為;【點睛】本題考查了二次函數的綜合題:熟練掌握二次函數圖象上點的坐標特征、二次函數的性質

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論