2024屆江蘇省蘇州市工業(yè)園區(qū)星灣中學九年級數(shù)學第一學期期末復習檢測試題含解析_第1頁
2024屆江蘇省蘇州市工業(yè)園區(qū)星灣中學九年級數(shù)學第一學期期末復習檢測試題含解析_第2頁
2024屆江蘇省蘇州市工業(yè)園區(qū)星灣中學九年級數(shù)學第一學期期末復習檢測試題含解析_第3頁
2024屆江蘇省蘇州市工業(yè)園區(qū)星灣中學九年級數(shù)學第一學期期末復習檢測試題含解析_第4頁
2024屆江蘇省蘇州市工業(yè)園區(qū)星灣中學九年級數(shù)學第一學期期末復習檢測試題含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2024屆江蘇省蘇州市工業(yè)園區(qū)星灣中學九年級數(shù)學第一學期期末復習檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,在△ABC中,∠A=90°,sinB=,點D在邊AB上,若AD=AC,則tan∠BCD的值為()A. B. C. D.2.如圖,在四邊形ABCD中,ADBC,DE⊥BC,垂足為點E,連接AC交DE于點F,點G為AF的中點,∠ACD=2∠ACB,若DG=3,EC=1,則DE的長為()A.2 B. C.2 D.3.二次函數(shù)中與的部分對應值如下表所示,則下列結(jié)論錯誤的是()-1013-1353A. B.當時,的值隨值的增大而減小C.當時, D.3是方程的一個根4.P(3,-2)關于原點對稱的點的坐標是()A.(3,2) B.(-3,2) C.(-3,-2) D.(3,-2)5.設a,b是方程x2+2x﹣20=0的兩個實數(shù)根,則a2+3a+b的值為()A.﹣18 B.21 C.﹣20 D.186.一組數(shù)據(jù)-3,2,2,0,2,1的眾數(shù)是()A.-3 B.2 C.0 D.17.已知是的反比例函數(shù),下表給出了與的一些值,表中“▲”處的數(shù)為()▲A. B. C. D.8.對于二次函數(shù),下列說法正確的是()A.當x>0,y隨x的增大而增大B.當x=2時,y有最大值-3C.圖像的頂點坐標為(-2,-7)D.圖像與x軸有兩個交點9.如圖,已知a∥b∥c,直線AC,DF與a、b、c相交,且AB=6,BC=4,DF=8,則DE=(

)A.12 B. C. D.310.如圖,△ABC內(nèi)接于圓,D是BC上一點,將∠B沿AD翻折,B點正好落在圓點E處,若∠C=50°,則∠BAE的度數(shù)是()A.40° B.50° C.80° D.90°11.近視鏡鏡片的焦距y(單位:米)是鏡片的度數(shù)x(單位:度)的函數(shù),下表記錄了一組數(shù)據(jù),在下列函數(shù)中,符合表格中所給數(shù)據(jù)的是:()(單位:度)…100250400500…(單位:米)…1.000.400.250.20…A.y=x B.y= C.y=﹣x+ D.y=12.下列函數(shù)中,是的反比例函數(shù)的是()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,一輛小車沿著坡度為的斜坡從點A向上行駛了50米到點B處,則此時該小車離水平面的垂直高度為_____________.14.如圖,在四邊形ABCD中,AD∥BC,AD=2,AB=,以點A為圓心,AD為半徑的圓與BC相切于點E,交AB于點F,則弧DF的長為_________.15.一次生活常識知識競賽一共有20道題,答對一題得5分,不答得0分,答錯扣2分,小聰有1道題沒答,競賽成績超過80分,則小聰至少答對了__________道題.16.如圖,在Rt△ABC中,∠C=90°,AC=6,AD∥BC,DE與AB交于點F,已知AD=4,DF=2EF,sin∠DAB=,則線段DE=_____.17.已知拋物線,那么點P(-3,4)關于該拋物線的對稱軸對稱的點的坐標是______.18.已知反比例函數(shù)的圖象經(jīng)過點,則這個函數(shù)的表達式為__________.三、解答題(共78分)19.(8分)如圖,⊙O的弦AB、CD的延長線相交于點P,且AB=CD.求證PA=PC.20.(8分)已知二次函數(shù).用配方法求該二次函數(shù)圖象的頂點坐標;在所給坐標系中畫出該二次函數(shù)的圖象,并直接寫出當時自變量的取值范圍.21.(8分)如圖,在中,,以斜邊上的中線為直徑作,分別與交于點.(1)過點作于點,求證:是的切線;(2)連接,若,求的長.22.(10分)定義:連結(jié)菱形的一邊中點與對邊的兩端點的線段把它分成三個三角形,如果其中有兩個三角形相似,那么稱這樣的菱形為自相似菱形.(1)判斷下列命題是真命題,還是假命題?①正方形是自相似菱形;②有一個內(nèi)角為60°的菱形是自相似菱形.③如圖1,若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E為BC中點,則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED.(2)如圖2,菱形ABCD是自相似菱形,∠ABC是銳角,邊長為4,E為BC中點.①求AE,DE的長;②AC,BD交于點O,求tan∠DBC的值.23.(10分)如圖,已知直線與x軸、y軸分別交于點A,B,與雙曲線分別交于點C,D,且點C的坐標為.(1)分別求出直線、雙曲線的函數(shù)表達式.(2)求出點D的坐標.(3)利用圖象直接寫出:當x在什么范圍內(nèi)取值時?24.(10分)如圖,是的外接圓,為直徑,的平分線交于點,過點的切線分別交,的延長線于點,,連接.(1)求證:;(2)若,,求的半徑.25.(12分)如圖,在平行四邊形ABCD中,點E,F(xiàn),G,H分別在邊AB,BC,CD,DA上,AE=CG,AH=CF,且EG平分∠HEF.(1)求證:△AEH≌△CGF.(2)若∠EFG=90°.求證:四邊形EFGH是正方形.26.已知:如圖,在平行四邊形ABCD中,過點C分別作AD、AB的垂線,交邊AD、AB延長線于點E、F.(1)求證:;(2)聯(lián)結(jié)AC,如果,求證:.

參考答案一、選擇題(每題4分,共48分)1、C【分析】作DE⊥BC于E,在△CDE中根據(jù)已知條件可求得DE,CE的長,從而求得tan∠BCD.【詳解】解:作DE⊥BC于E.∵∠A=90°,sinB=,設AC=3a=AD,則AB=4a,BC=5a,∴BD=AB-AD=a.∴DE=BD·sinB=a,∴根據(jù)勾股定理,得BE=a,∴CE=BC-BE=a,∴tan∠BCD=故選C.【點睛】本題考查了勾股定理在直角三角形中的運用,考查了直角三角形中三角函數(shù)值的計算,本題中正確求三角函數(shù)值是解題的關鍵.2、C【分析】根據(jù)直角三角形斜邊上中線的性質(zhì)可得DG=AG,根據(jù)等腰三角形的性質(zhì),得到,由三角形外角的性質(zhì),可得,再根據(jù)平行線的性質(zhì)和等量關系可得,根據(jù)等腰三角形的性質(zhì)得到CD=DG,最后由勾股定理解題即可.【詳解】為AF的中點,即DG為斜邊AF的中線,設在中,根據(jù)勾股定理得,故選:C.【點睛】本題考查勾股定理、直角三角形斜邊上的中線、等腰三角形的性質(zhì)、平行線的性質(zhì)等知識,是重要考點,難度較易,掌握相關知識是解題關鍵.3、C【分析】根據(jù)表格中的數(shù)值計算出函數(shù)表達式,從而可判斷A選項,利用對稱軸公式可計算出對稱軸,從而判斷其增減性,再根據(jù)函數(shù)圖象及表格中y=3時對應的x,可判斷C選項,把對應參數(shù)值代入即可判斷D選項.【詳解】把(-1,-1),(0,3),(1,5)代入得,解得,∴,A.,故本選項正確;B.該函數(shù)對稱軸為直線,且,函數(shù)圖象開口向下,所以當時,y隨x的增大而減小,故本選項正確;C.由表格可知,當x=0或x=3時,y=3,且函數(shù)圖象開口向下,所以當y<3時,x<0或x>3,故本選項錯誤;D.方程為,把x=3代入得-9+6+3=0,所以本選項正確.故選:C.【點睛】本題考查了二次函數(shù)表達式求法,二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)的性質(zhì)等知識,“待定系數(shù)法”是求函數(shù)表達式的常用方法,需熟練掌握.4、B【解析】根據(jù)平面坐標系中點P(x,y)關于原點對稱點是(-x,-y)即可.【詳解】解:關于原點對稱的點的橫縱坐標都互為相反數(shù),因此P(3,-2)關于原點對稱的點的坐標是(-3,2).故答案為B.【點睛】本題考查關于原點對稱點的坐標的關系,解題的關鍵是理解并識記關于原點對稱點的特點.5、D【分析】根據(jù)根與系數(shù)的關系看得a+b=﹣2,由a,b是方程x2+2x﹣20=0的兩個實數(shù)根看得a2+2a=20,進而可以得解.【詳解】解:∵a,b是方程x2+2x﹣20=0的兩個實數(shù)根,∴a2+2a=20,a+b=﹣2,∴a2+3a+b=a2+2a+a+b=20﹣2=1則a2+3a+b的值為1.故選:D.【點睛】本題主要考查的是一元二次方程中根與系數(shù)的關系,掌握一元二次方程的根與系數(shù)的關系式解此題的關鍵.6、B【解析】一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)是眾數(shù),根據(jù)眾數(shù)的定義進行求解即可得.【詳解】數(shù)據(jù)-3,2,2,0,2,1中,2出現(xiàn)了3次,出現(xiàn)次數(shù)最多,其余的都出現(xiàn)了1次,所以這組數(shù)據(jù)的眾數(shù)是2,故選B.【點睛】本題考查了眾數(shù)的定義,熟練掌握眾數(shù)的定義是解題的關鍵.7、D【分析】設出反比例函數(shù)解析式,把代入可求得反比例函數(shù)的比例系數(shù),當時計算求得表格中未知的值.【詳解】是的反比例函數(shù),,,,,當時,,故選:D.【點睛】本題考查了用待定系數(shù)法求反比例函數(shù)解析式;點在反比例函數(shù)圖象上,點的橫縱坐標適合函數(shù)解析式,在同一函數(shù)圖象上的點的橫縱坐標的積相等.8、B【詳解】二次函數(shù),所以二次函數(shù)的開口向下,當x<2,y隨x的增大而增大,選項A錯誤;當x=2時,取得最大值,最大值為-3,選項B正確;頂點坐標為(2,-3),選項C錯誤;頂點坐標為(2,-3),拋物線開口向下可得拋物線與x軸沒有交點,選項D錯誤,故答案選B.考點:二次函數(shù)的性質(zhì).9、C【解析】解:∵a∥b∥c,∴,∵AB=6,BC=4,DF=8,∴,∴DE=.故選C.【點睛】本題考查了平行線分線段成比例定理,熟練掌握定理內(nèi)容是關鍵:三條平行線截兩條直線,所得的對應線段成比例.10、C【分析】首先連接BE,由折疊的性質(zhì)可得:AB=AE,即可得,然后由圓周角定理得出∠ABE和∠AEB的度數(shù),繼而求得∠BAE的度數(shù).【詳解】連接BE,如圖所示:由折疊的性質(zhì)可得:AB=AE,∴,∴∠ABE=∠AEB=∠C=50°,∴∠BAE=180°﹣50°﹣50°=80°.故選C.【點睛】本題考查了圓周角定理,折疊的性質(zhì)以及三角形內(nèi)角和定理.熟練掌握圓周角定理是解題的關鍵,注意數(shù)形結(jié)合思想的應用.11、B【分析】根據(jù)表格數(shù)據(jù)可得近視鏡鏡片的焦距y(單位:米)與度數(shù)x(單位:度)成反比例,依此即可求解;【詳解】根據(jù)表格數(shù)據(jù)可得,100×1=250×0.4=400×0.25=500×0.2=100,所以近視鏡鏡片的焦距y(單位:米)與度數(shù)x(單位:度)成反比例,所以y關于x的函數(shù)關系式是y=.故選:B.【點睛】此題主要考查了根據(jù)實際問題列反比例函數(shù)關系式,關鍵是掌握反比例函數(shù)形如(k≠0).12、B【分析】根據(jù)是的反比例函數(shù)的定義,逐一判斷選項即可.【詳解】A、是正比例函數(shù),故本選項不符合題意.B、是的反比例函數(shù),故本選項符合題意;C、不是的反比例函數(shù),故本選項不符合題意;D、是正比例函數(shù),故本選項不符合題意;故選:B.【點睛】本題主要考查反比例函數(shù)的定義,掌握反比例函數(shù)的形式(k≠0的常數(shù)),是解題的關鍵.二、填空題(每題4分,共24分)13、2【分析】設出垂直高度,表示出水平距離,利用勾股定理求解即可.【詳解】設此時該小車離水平面的垂直高度為x米,則水平前進了x米.根據(jù)勾股定理可得:x2+(x)2=1.解得x=2.即此時該小車離水平面的垂直高度為2米.故答案為:2.【點睛】考查了解直角三角形的應用?坡度坡角問題,此題的關鍵是熟悉且會靈活應用公式:tan(坡度)=垂直高度÷水平寬度,綜合利用了勾股定理.14、【解析】分析:連接AE,根據(jù)圓的切線的性質(zhì)可得AD⊥BC,解Rt△ABE可求出∠ABE,進而得到∠DAB,然后運用弧長的計算公式即可得出答案.詳解:連接AE,∵BC為圓A的切線,∴AE⊥BC,∴△ABE為直角三角形,∵AD=2,AB=2,∴AE=2,∴△ABE為等腰直角三角形,∴∠BAE=45°,∵AD∥BC,∴∠DAE=∠AEB=90°,∴∠BAD=45°+90°=135°,∴弧FED的長=π.點睛:本題主要考查的是圓的切線的性質(zhì)以及弧長的計算公式,屬于中等難度題型.得出∠BAD的度數(shù)是解題的關鍵.15、1【分析】設小聰答對了x道題,根據(jù)“答對題數(shù)×5?答錯題數(shù)×2>80分”列出不等式,解之可得.【詳解】設小聰答對了x道題,根據(jù)題意,得:5x?2(19?x)>80,解得x>16,∵x為整數(shù),∴x=1,即小聰至少答對了1道題,故答案為:1.【點睛】本題主要考查一元一次不等式的應用,列不等式解應用題需要以“至少”、“最多”、“不超過”、“不低于”等詞來體現(xiàn)問題中的不等關系.因此,建立不等式要善于從“關鍵詞”中挖掘其內(nèi)涵.16、2【分析】作DG⊥BC于G,則DG=AC=6,CG=AD=4,由平行線得出△ADF∽△BEF,得出==2,求出BE=AD=2,由平行線的性質(zhì)和三角函數(shù)定義求出AB=C=10,由勾股定理得出BC=8,求出EG=BC﹣BE﹣CG=2,再由勾股定理即可得出答案.【詳解】解:作DG⊥BC于G,則DG=AC=6,CG=AD=4,∵AD∥BC,∴△ADF∽△BEF,∴==2,∴BE=AD=2,∵AD∥BC,∴∠ABC=∠DAB,∵∠C=90°,∴sin∠ABC==sin∠DAB=,∴AB=AC=×6=10,∴BC==8,∴EG=BC﹣BE﹣CG=8﹣2﹣4=2,∴DE===2;故答案為:2.【點睛】本題考查了相似三角形的判定與性質(zhì)、平行線的性質(zhì)以及解直角三角形等知識;證明三角形相似是解題的關鍵.17、(1,4).【解析】試題解析:拋物線的對稱軸為:點關于該拋物線的對稱軸對稱的點的坐標是故答案為18、【分析】把點的坐標代入根據(jù)待定系數(shù)法即可得解.【詳解】解:∵反比例函數(shù)y=經(jīng)過點M(-3,2),

∴2=,

解得k=-6,

所以,反比例函數(shù)表達式為y=.

故答案為:y=.【點睛】本題考查了待定系數(shù)法求反比例函數(shù)解析式,是求函數(shù)解析式常用的方法,需要熟練掌握并靈活運用.三、解答題(共78分)19、見解析.【分析】連接AC,由圓心角、弧、弦的關系得出,進而得出,根據(jù)等弧所對的圓周角相等得出∠C=∠A,根據(jù)等角對等邊證得結(jié)論.【詳解】解:如圖,連接.∵,∴.∴,即.∴.∴.【點睛】本題考查了圓心角、弧、弦的關系,圓周角定理,等腰三角形的判定等,熟練掌握性質(zhì)定理是解題的關鍵.20、(1)頂點坐標為;(2)圖象見解析,由圖象得當時.【分析】(1)用配方法將函數(shù)一般式轉(zhuǎn)化為頂點式即可;(2)采用列表描點法畫出二次函數(shù)圖象即可,根據(jù)函數(shù)圖象,即可判定當時自變量的取值范圍.【詳解】..頂點坐標為列表:············圖象如圖所示由圖象得當時.【點睛】此題主要考查二次函數(shù)頂點式以及圖象的性質(zhì),熟練掌握,即可解題.21、(1)見解析;(2)【分析】(1)連接,ND,可知∠CND=90°,再證,即可證,最后根據(jù)切線的定義求得答案;【詳解】解:如圖連接,,在中,為斜邊中線,∴,∵是的直徑.∴,∴,∵等腰三線合一,∴,∵在中,為斜邊的中點,∴,∴,∴,∵,∴,∴,∴,∴,∵是的半徑,∴是的切線.(2)連接,則四邊形為矩形,,∴,,∴∴【點睛】本題考查的是圓的切線的判定,垂徑定理,等腰三角形的性質(zhì),矩形的判定和勾股定理,是一道綜合性較強的習題,能夠充分調(diào)動所學知識多次利用勾股定理求解是解題的關鍵.22、(1)見解析;(2)①AE=2,DE=4;②tan∠DBC=.【分析】(1)①證明△ABE≌△DCE(SAS),得出△ABE∽△DCE即可;②連接AC,由自相似菱形的定義即可得出結(jié)論;③由自相似菱形的性質(zhì)即可得出結(jié)論;(2)①由(1)③得△ABE∽△DEA,得出,求出AE=2,DE=4即可;②過E作EM⊥AD于M,過D作DN⊥BC于N,則四邊形DMEN是矩形,得出DN=EM,DM=EN,∠M=∠N=90°,設AM=x,則EN=DM=x+4,由勾股定理得出方程,解方程求出AM=1,EN=DM=5,由勾股定理得出DN=EM==,求出BN=7,再由三角函數(shù)定義即可得出答案.【詳解】解:(1)①正方形是自相似菱形,是真命題;理由如下:如圖3所示:∵四邊形ABCD是正方形,點E是BC的中點,∴AB=CD,BE=CE,∠ABE=∠DCE=90°,在△ABE和△DCE中,∴△ABE≌△DCE(SAS),∴△ABE∽△DCE,∴正方形是自相似菱形,故答案為:真命題;②有一個內(nèi)角為60°的菱形是自相似菱形,是假命題;理由如下:如圖4所示:連接AC,∵四邊形ABCD是菱形,∴AB=BC=CD,AD∥BC,AB∥CD,∵∠B=60°,∴△ABC是等邊三角形,∠DCE=120°,∵點E是BC的中點,∴AE⊥BC,∴∠AEB=∠DAE=90°,∴只能△AEB與△DAE相似,∵AB∥CD,∴只能∠B=∠AED,若∠AED=∠B=60°,則∠CED=180°﹣90°﹣60°=30°,∴∠CDE=180°﹣120°﹣30°=30°,∴∠CED=∠CDE,∴CD=CE,不成立,∴有一個內(nèi)角為60°的菱形不是自相似菱形,故答案為:假命題;③若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E為BC中點,則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED,是真命題;理由如下:∵∠ABC=α(0°<α<90°),∴∠C>90°,且∠ABC+∠C=180°,△ABE與△EDC不能相似,同理△AED與△EDC也不能相似,∵四邊形ABCD是菱形,∴AD∥BC,∴∠AEB=∠DAE,當∠AED=∠B時,△ABE∽△DEA,∴若菱形ABCD是自相似菱形,∠ABC=α(0°<α<90°),E為BC中點,則在△ABE,△AED,△EDC中,相似的三角形只有△ABE與△AED,故答案為:真命題;(2)①∵菱形ABCD是自相似菱形,∠ABC是銳角,邊長為4,E為BC中點,∴BE=2,AB=AD=4,由(1)③得:△ABE∽△DEA,∴∴AE2=BE?AD=2×4=8,∴AE=2,DE===4,故答案為:AE=2;DE=4;②過E作EM⊥AD于M,過D作DN⊥BC于N,如圖2所示:則四邊形DMEN是矩形,∴DN=EM,DM=EN,∠M=∠N=90°,設AM=x,則EN=DM=x+4,由勾股定理得:EM2=DE2﹣DM2=AE2﹣AM2,即(4)2﹣(x+4)2=(2)2﹣x2,解得:x=1,∴AM=1,EN=DM=5,∴DN=EM==,在Rt△BDN中,∵BN=BE+EN=2+5=7,∴tan∠DBC=,故答案為:.【點睛】本題考查了自相似菱形的定義和判定,菱形的性質(zhì)應用,三角形全等的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理的應用,銳角三角函數(shù)的定義,掌握三角形相似的判定和性質(zhì)是解題的關鍵.23、(1),;(2)點D的坐標是;(3)【解析】(1)把C(-1,2)代入y1=x+m得到m的值,把C(-1,2)代入雙曲線得到k的值;(2)解由兩個函數(shù)的解析式組成的方程組,即可得交點坐標D;

(3)觀察圖象得到當-3<x<-2時一次函數(shù)的函數(shù)值比反比例函數(shù)的函數(shù)值要大.【詳解】解:(1)∵點在的圖象上;∴,解得,則.∵在的圖象上,∴,解得,∴.(2)聯(lián)立得,解得,或,∵點C的坐標是,∴點D的坐標是.(3)由圖象可知,當時,【點睛】本題考查了用待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式即反比例函數(shù)與一次函數(shù)的交點問題.解題的關鍵是:(1)代入點C的坐標求出m、k的值;(2)把兩函數(shù)的解析式聯(lián)立起來組成方程組,解方程組即可得到它們的交點坐標.(3)根據(jù)兩函數(shù)圖象的上下位置關系找出不等式的解集.本題考查的是反比例函數(shù)與一次函數(shù)的交點問題及也考查了數(shù)形結(jié)合的思想.24、(1)見解析;(2)1【解析】(1)連結(jié)OD,由圓內(nèi)的等腰三角形和角平

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論