2024屆江西省新余四中、宜春中學高三下學期高中畢業班3月質檢數學試題試卷_第1頁
2024屆江西省新余四中、宜春中學高三下學期高中畢業班3月質檢數學試題試卷_第2頁
2024屆江西省新余四中、宜春中學高三下學期高中畢業班3月質檢數學試題試卷_第3頁
2024屆江西省新余四中、宜春中學高三下學期高中畢業班3月質檢數學試題試卷_第4頁
2024屆江西省新余四中、宜春中學高三下學期高中畢業班3月質檢數學試題試卷_第5頁
已閱讀5頁,還剩16頁未讀, 繼續免費閱讀

VIP免費下載

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆江西省新余四中、宜春中學高三下學期高中畢業班3月質檢數學試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,若,則a的取值范圍為()A. B. C. D.2.已知雙曲線:(,)的右焦點與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.33.已知函數,若關于的方程有4個不同的實數根,則實數的取值范圍為()A. B. C. D.4.雙曲線﹣y2=1的漸近線方程是()A.x±2y=0 B.2x±y=0 C.4x±y=0 D.x±4y=05.將3個黑球3個白球和1個紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種6.已知,則()A. B. C. D.7.在條件下,目標函數的最大值為40,則的最小值是()A. B. C. D.28.若集合,則()A. B.C. D.9.函數的部分圖像如圖所示,若,點的坐標為,若將函數向右平移個單位后函數圖像關于軸對稱,則的最小值為()A. B. C. D.10.已知的值域為,當正數a,b滿足時,則的最小值為()A. B.5 C. D.911.的展開式中的項的系數為()A.120 B.80 C.60 D.4012.設是等差數列的前n項和,且,則()A. B. C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.設函數,當時,記最大值為,則的最小值為______.14.若,則________.15.若,則=____,=___.16.函數f(x)=x2﹣xlnx的圖象在x=1處的切線方程為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數是自然對數的底數.(1)若,討論的單調性;(2)若有兩個極值點,求的取值范圍,并證明:.18.(12分)已知橢圓C:(a>b>0)過點(0,),且滿足a+b=3.(1)求橢圓C的方程;(2)若斜率為的直線與橢圓C交于兩個不同點A,B,點M坐標為(2,1),設直線MA與MB的斜率分別為k1,k2,試問k1+k2是否為定值?并說明理由.19.(12分)如圖,四棱錐中,底面,,點在線段上,且.(1)求證:平面;(2)若,,,,求二面角的正弦值.20.(12分)為提供市民的健身素質,某市把四個籃球館全部轉為免費民用(1)在一次全民健身活動中,四個籃球館的使用場數如圖,用分層抽樣的方法從四場館的使用場數中依次抽取共25場,在中隨機取兩數,求這兩數和的分布列和數學期望;(2)設四個籃球館一個月內各館使用次數之和為,其相應維修費用為元,根據統計,得到如下表的數據:x10152025303540y100001176113010139801477115440160202.993.494.054.504.995.495.99①用最小二乘法求與的回歸直線方程;②叫做籃球館月惠值,根據①的結論,試估計這四個籃球館月惠值最大時的值參考數據和公式:,21.(12分)已知在多面體中,平面平面,且四邊形為正方形,且//,,,點,分別是,的中點.(1)求證:平面;(2)求平面與平面所成的銳二面角的余弦值.22.(10分)如圖,為等腰直角三角形,,D為AC上一點,將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】

求出函數定義域,在定義域內確定函數的單調性,利用單調性解不等式.【題目詳解】由得,在時,是增函數,是增函數,是增函數,∴是增函數,∴由得,解得.故選:C.【題目點撥】本題考查函數的單調性,考查解函數不等式,解題關鍵是確定函數的單調性,解題時可先確定函數定義域,在定義域內求解.2、A【解題分析】

由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【題目詳解】由已知,,漸近線方程為,因為圓被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【題目點撥】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關系,考查學生的運算能力,是一道容易題.3、C【解題分析】

求導,先求出在單增,在單減,且知設,則方程有4個不同的實數根等價于方程在上有兩個不同的實數根,再利用一元二次方程根的分布條件列不等式組求解可得.【題目詳解】依題意,,令,解得,,故當時,,當,,且,故方程在上有兩個不同的實數根,故,解得.故選:C.【題目點撥】本題考查確定函數零點或方程根個數.其方法:(1)構造法:構造函數(易求,可解),轉化為確定的零點個數問題求解,利用導數研究該函數的單調性、極值,并確定定義區間端點值的符號(或變化趨勢)等,畫出的圖象草圖,數形結合求解;(2)定理法:先用零點存在性定理判斷函數在某區間上有零點,然后利用導數研究函數的單調性、極值(最值)及區間端點值符號,進而判斷函數在該區間上零點的個數.4、A【解題分析】試題分析:漸近線方程是﹣y2=1,整理后就得到雙曲線的漸近線.解:雙曲線其漸近線方程是﹣y2=1整理得x±2y=1.故選A.點評:本題考查了雙曲線的漸進方程,把雙曲線的標準方程中的“1”轉化成“1”即可求出漸進方程.屬于基礎題.5、D【解題分析】

采取分類計數和分步計數相結合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個相同顏色的排在一起【題目詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時將紅球插入6個球組成的7個空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時紅球只能插入兩個相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D【題目點撥】本題考查排列組合公式的具體應用,插空法的應用,屬于基礎題6、D【解題分析】

根據指數函數的單調性,即當底數大于1時單調遞增,當底數大于零小于1時單調遞減,對選項逐一驗證即可得到正確答案.【題目詳解】因為,所以,所以是減函數,又因為,所以,,所以,,所以A,B兩項均錯;又,所以,所以C錯;對于D,,所以,故選D.【題目點撥】這個題目考查的是應用不等式的性質和指對函數的單調性比較大小,兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質得到大小關系,有時可以代入一些特殊的數據得到具體值,進而得到大小關系.7、B【解題分析】

畫出可行域和目標函數,根據平移得到最值點,再利用均值不等式得到答案.【題目詳解】如圖所示,畫出可行域和目標函數,根據圖像知:當時,有最大值為,即,故..當,即時等號成立.故選:.【題目點撥】本題考查了線性規劃中根據最值求參數,均值不等式,意在考查學生的綜合應用能力.8、A【解題分析】

先確定集合中的元素,然后由交集定義求解.【題目詳解】,.故選:A.【題目點撥】本題考查求集合的交集運算,掌握交集定義是解題關鍵.9、B【解題分析】

根據圖象以及題中所給的條件,求出和,即可求得的解析式,再通過平移變換函數圖象關于軸對稱,求得的最小值.【題目詳解】由于,函數最高點與最低點的高度差為,所以函數的半個周期,所以,又,,則有,可得,所以,將函數向右平移個單位后函數圖像關于軸對稱,即平移后為偶函數,所以的最小值為1,故選:B.【題目點撥】該題主要考查三角函數的圖象和性質,根據圖象求出函數的解析式是解決該題的關鍵,要求熟練掌握函數圖象之間的變換關系,屬于簡單題目.10、A【解題分析】

利用的值域為,求出m,再變形,利用1的代換,即可求出的最小值.【題目詳解】解:∵的值域為,∴,∴,∴,當且僅當時取等號,∴的最小值為.故選:A.【題目點撥】本題主要考查了對數復合函數的值域運用,同時也考查了基本不等式中“1的運用”,屬于中檔題.11、A【解題分析】

化簡得到,再利用二項式定理展開得到答案.【題目詳解】展開式中的項為.故選:【題目點撥】本題考查了二項式定理,意在考查學生的計算能力.12、C【解題分析】

利用等差數列的性質化簡已知條件,求得的值.【題目詳解】由于等差數列滿足,所以,,.故選:C【題目點撥】本小題主要考查等差數列的性質,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

易知,設,,利用絕對值不等式的性質即可得解.【題目詳解】,設,,令,當時,,所以單調遞減令,當時,,所以單調遞增所以當時,,,則則,即故答案為:.【題目點撥】本題考查函數最值的求法,考查絕對值不等式的性質,考查轉化思想及邏輯推理能力,屬于難題.14、13【解題分析】

由導函數的應用得:設,,所以,,又,所以,即,由二項式定理:令得:,再由,求出,從而得到的值;【題目詳解】解:設,,所以,,又,所以,即,取得:,又,所以,故,故答案為:13【題目點撥】本題考查了導函數的應用、二項式定理,屬于中檔題15、12821【解題分析】

令,求得的值.利用展開式的通項公式,求得的值.【題目詳解】令,得.展開式的通項公式為,當時,為,即.【題目點撥】本小題主要考查二項式展開式的通項公式,考查賦值法求解二項式系數有關問題,屬于基礎題.16、x﹣y=0.【解題分析】

先將x=1代入函數式求出切點縱坐標,然后對函數求導數,進一步求出切線斜率,最后利用點斜式寫出切線方程.【題目詳解】由題意得.故切線方程為y﹣1=x﹣1,即x﹣y=0.故答案為:x﹣y=0.【題目點撥】本題考查利用導數求切線方程的基本方法,利用切點滿足的條件列方程(組)是關鍵.同時也考查了學生的運算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)減區間是,增區間是;(2),證明見解析.【解題分析】

(1)當時,求得函數的導函數以及二階導函數,由此求得的單調區間.(2)令求得,構造函數,利用導數求得的單調區間、極值和最值,結合有兩個極值點,求得的取值范圍.將代入列方程組,由證得.【題目詳解】(1),,又,所以在單增,從而當時,遞減,當時,遞增.(2).令,令,則故在遞增,在遞減,所以.注意到當時,所以當時,有一個極值點,當時,有兩個極值點,當時,沒有極值點,綜上因為是的兩個極值點,所以不妨設,得,因為在遞減,且,所以又所以【題目點撥】本小題主要考查利用導數研究函數的單調區間,考查利用導數研究函數的極值點,考查利用導數證明不等式,考查化歸與轉化的數學思想方法,屬于難題.18、(1)(2)k1+k2為定值0,見解析【解題分析】

(1)利用已知條件直接求解,得到橢圓的方程;(2)設直線在軸上的截距為,推出直線方程,然后將直線與橢圓聯立,設,利用韋達定理求出,然后化簡求解即可.【題目詳解】(1)由橢圓過點(0,),則,又a+b=3,所以,故橢圓的方程為;(2),證明如下:設直線在軸上的截距為,所以直線的方程為:,由得:,由得,設,則,所以,又,所以,故.【題目點撥】本題主要考查了橢圓的標準方程的求解,直線與橢圓的位置關系的綜合應用,考查了方程的思想,轉化與化歸的思想,考查了學生的運算求解能力.19、(1)證明見解析(2)【解題分析】

(1)要證明平面,只需證明,,即可求得答案;(2)先根據已知證明四邊形為矩形,以為原點,為軸,為軸,為軸,建立坐標系,求得平面的法向量為,平面的法向量,設二面角的平面角為,,即可求得答案.【題目詳解】(1)平面,平面,.,,.又,平面.(2)由(1)可知.在中,,..又,,四邊形為矩形.以為原點,為軸,為軸,為軸,建立坐標系,如圖:則:,,,,:,設平面的法向量為,即,令,則,由題平面,即平面的法向量為由二面角的平面角為銳角,設二面角的平面角為即二面角的正弦值為:.【題目點撥】本題主要考查了求證線面垂直和向量法求二面角,解題關鍵是掌握線面垂直判斷定理和向量法求二面角的方法,考查了分析能力和計算能力,屬于中檔題.20、(1)見解析,12.5(2)①②20【解題分析】

(1)運用分層抽樣,結合總場次為100,可求得的值,再運用古典概型的概率計算公式可求解果;(2)①由公式可計算的值,進而可求與的回歸直線方程;②求出,再對函數求導,結合單調性,可估計這四個籃球館月惠值最大時的值.【題目詳解】解:(1)抽樣比為,所以分別是,6,7,8,5所以兩數之和所有可能取值是:10,12,13,15,,,所以分布列為期望為(2)因為所以,,;②,設,所以當遞增,當遞減所以約惠值最大值時的值為20【題目點撥】本題考查直方圖的實際應用,涉及求概率,平均數、擬合直線和導數等問題,關鍵是要讀懂題意,屬于中檔題.21、(1)證明見解析;(2).【解題分析】

(1)構造直線所在平面,由面面平行推證線面平行;(2)以為坐標原點,建立空間直角坐標系,分別求出兩個平面的法向量,再由法向量之間的夾角,求得二面角的余弦值.【題目詳解】(1)過點交于點,連接,如下圖所示:因為平面平面,且交線為,又四邊形為正方形,故可得,故可得平面,又平面,故可得.在三角形中,因為為中點,,故可得//

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論