




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省銅陵市聯考2024屆高三上數學期末統考試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平行四邊形中,若則()A. B. C. D.2.已知函數,若函數的圖象恒在軸的上方,則實數的取值范圍為()A. B. C. D.3.已知向量,,則與共線的單位向量為()A. B.C.或 D.或4.已知集合,,若,則實數的值可以為()A. B. C. D.5.在中,在邊上滿足,為的中點,則().A. B. C. D.6.若復數z滿足,則()A. B. C. D.7.若函數在處有極值,則在區間上的最大值為()A. B.2 C.1 D.38.已知函數,,若方程恰有三個不相等的實根,則的取值范圍為()A. B.C. D.9.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.10.設復數,則=()A.1 B. C. D.11.已知向量,,則向量在向量上的投影是()A. B. C. D.12.函數在上的圖象大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)在長方體中,已知棱長,體對角線,兩異面直線與所成的角為,則該長方體的表面積是____________.14.工人在安裝一個正六邊形零件時,需要固定如圖所示的六個位置的螺栓.若按一定順序將每個螺栓固定緊,但不能連續固定相鄰的2個螺栓.則不同的固定螺栓方式的種數是________.15.設函數,則______.16.已知關于的方程在區間上恰有兩個解,則實數的取值范圍是________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)求函數的極值;(2)當時,求證:.18.(12分)已知函數(mR)的導函數為.(1)若函數存在極值,求m的取值范圍;(2)設函數(其中e為自然對數的底數),對任意mR,若關于x的不等式在(0,)上恒成立,求正整數k的取值集合.19.(12分)在平面直角坐標系中,已知橢圓的左、右頂點分別為、,焦距為2,直線與橢圓交于兩點(均異于橢圓的左、右頂點).當直線過橢圓的右焦點且垂直于軸時,四邊形的面積為6.(1)求橢圓的標準方程;(2)設直線的斜率分別為.①若,求證:直線過定點;②若直線過橢圓的右焦點,試判斷是否為定值,并說明理由.20.(12分)已知直線:(為參數),曲線(為參數).(1)設與相交于,兩點,求;(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線距離的最小值.21.(12分)在一次電視節目的答題游戲中,題型為選擇題,只有“A”和“B”兩種結果,其中某選手選擇正確的概率為p,選擇錯誤的概率為q,若選擇正確則加1分,選擇錯誤則減1分,現記“該選手答完n道題后總得分為”.(1)當時,記,求的分布列及數學期望;(2)當,時,求且的概率.22.(10分)在平面直角坐標系中,直線的參數方程為(為參數),直線與曲線交于兩點.(1)求的長;(2)在以為極點,軸的正半軸為極軸建立的極坐標系中,設點的極坐標為,求點到線段中點的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
由,,利用平面向量的數量積運算,先求得利用平行四邊形的性質可得結果.【詳解】如圖所示,
平行四邊形中,,
,,,
因為,
所以
,
,所以,故選C.【點睛】本題主要考查向量的幾何運算以及平面向量數量積的運算法則,屬于中檔題.向量的運算有兩種方法:(1)平行四邊形法則(平行四邊形的對角線分別是兩向量的和與差);(2)三角形法則(兩箭頭間向量是差,箭頭與箭尾間向量是和).2、B【解析】
函數的圖象恒在軸的上方,在上恒成立.即,即函數的圖象在直線上方,先求出兩者相切時的值,然后根據變化時,函數的變化趨勢,從而得的范圍.【詳解】由題在上恒成立.即,的圖象永遠在的上方,設與的切點,則,解得,易知越小,圖象越靠上,所以.故選:B.【點睛】本題考查函數圖象與不等式恒成立的關系,考查轉化與化歸思想,首先函數圖象轉化為不等式恒成立,然后不等式恒成立再轉化為函數圖象,最后由極限位置直線與函數圖象相切得出參數的值,然后得出參數范圍.3、D【解析】
根據題意得,設與共線的單位向量為,利用向量共線和單位向量模為1,列式求出即可得出答案.【詳解】因為,,則,所以,設與共線的單位向量為,則,解得或所以與共線的單位向量為或.故選:D.【點睛】本題考查向量的坐標運算以及共線定理和單位向量的定義.4、D【解析】
由題意可得,根據,即可得出,從而求出結果.【詳解】,且,,∴的值可以為.故選:D.【點睛】考查描述法表示集合的定義,以及并集的定義及運算.5、B【解析】
由,可得,,再將代入即可.【詳解】因為,所以,故.故選:B.【點睛】本題考查平面向量的線性運算性質以及平面向量基本定理的應用,是一道基礎題.6、D【解析】
先化簡得再求得解.【詳解】所以.故選:D【點睛】本題主要考查復數的運算和模的計算,意在考查學生對這些知識的理解掌握水平.7、B【解析】
根據極值點處的導數為零先求出的值,然后再按照求函數在連續的閉區間上最值的求法計算即可.【詳解】解:由已知得,,,經檢驗滿足題意.,.由得;由得或.所以函數在上遞增,在上遞減,在上遞增.則,,由于,所以在區間上的最大值為2.故選:B.【點睛】本題考查了導數極值的性質以及利用導數求函數在連續的閉區間上的最值問題的基本思路,屬于中檔題.8、B【解析】
由題意可將方程轉化為,令,,進而將方程轉化為,即或,再利用的單調性與最值即可得到結論.【詳解】由題意知方程在上恰有三個不相等的實根,即,①.因為,①式兩邊同除以,得.所以方程有三個不等的正實根.記,,則上述方程轉化為.即,所以或.因為,當時,,所以在,上單調遞增,且時,.當時,,在上單調遞減,且時,.所以當時,取最大值,當,有一根.所以恰有兩個不相等的實根,所以.故選:B.【點睛】本題考查了函數與方程的關系,考查函數的單調性與最值,轉化的數學思想,屬于中檔題.9、D【解析】
設,在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設,在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D【點睛】本題主要考查正弦定理和余弦定理的應用,還考查了數形結合的思想和運算求解的能力,屬于中檔題.10、A【解析】
根據復數的除法運算,代入化簡即可求解.【詳解】復數,則故選:A.【點睛】本題考查了復數的除法運算與化簡求值,屬于基礎題.11、A【解析】
先利用向量坐標運算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A【點睛】本題考查了向量加法、減法的坐標運算和向量投影的概念,考查了學生概念理解,數學運算的能力,屬于中檔題.12、A【解析】
首先判斷函數的奇偶性,再根據特殊值即可利用排除法解得;【詳解】解:依題意,,故函數為偶函數,圖象關于軸對稱,排除C;而,排除B;,排除D.故選:.【點睛】本題考查函數圖象的識別,函數的奇偶性的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】
作出長方體如圖所示,由于,則就是異面直線與所成的角,且,在等腰直角三角形中,由,得,又,則,從而長方體的表面積為.14、60【解析】分析:首先將選定第一個釘,總共有6種方法,假設選定1號,之后分析第二步,第三步等,按照分類加法計數原理,可以求得共有10種方法,利用分步乘法計數原理,求得總共有種方法.詳解:根據題意,第一個可以從6個釘里任意選一個,共有6種選擇方法,并且是機會相等的,若第一個選1號釘的時候,第二個可以選3,4,5號釘,依次選下去,可以得到共有10種方法,所以總共有種方法,故答案是60.點睛:該題考查的是有關分類加法計數原理和分步乘法計數原理,在解題的過程中,需要逐個的將對應的過程寫出來,所以利用列舉法將對應的結果列出,而對于第一個選哪個是機會均等的,從而用乘法運算得到結果.15、【解析】
由自變量所在定義域范圍,代入對應解析式,再由對數加減法運算法則與對數恒等式關系分別求值再相加,即為答案.【詳解】因為函數,則因為,則故故答案為:【點睛】本題考查分段函數求值,屬于簡單題.16、【解析】
先換元,令,將原方程轉化為,利用參變分離法轉化為研究兩函數的圖像交點,觀察圖像,即可求出.【詳解】因為關于的方程在區間上恰有兩個解,令,所以方程在上只有一解,即有,直線與在的圖像有一個交點,由圖可知,實數的取值范圍是,但是當時,還有一個根,所以此時共有3個根.綜上實數的取值范圍是.【點睛】本題主要考查學生運用轉化與化歸思想的能力,方程有解問題轉化成兩函數的圖像有交點問題,是常見的轉化方式.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)的極小值為,無極大值.(2)見解析.【解析】
(1)對求導,確定函數單調性,得到函數極值.(2)構造函數,證明恒成立,得到,,得證.【詳解】(1)由題意知,,令,得,令,得.則在上單調遞減,在上單調遞增,所以的極小值為,無極大值.(2)當時,要證,即證.令,則,令,得,令,得,則在上單調遞減,在上單調遞增,所以當時,,所以,即.因為時,,所以當時,,所以當時,不等式成立.【點睛】本題考查了函數的單調性,極值,不等式的證明,構造函數是解題的關鍵.18、(1)(2){1,2}.【解析】
(1)求解導數,表示出,再利用的導數可求m的取值范圍;(2)表示出,結合二次函數知識求出的最小值,再結合導數及基本不等式求出的最值,從而可求正整數k的取值集合.【詳解】(1)因為,所以,所以,則,由題意可知,解得;(2)由(1)可知,,所以因為整理得,設,則,所以單調遞增,又因為,所以存在,使得,設,是關于開口向上的二次函數,則,設,則,令,則,所以單調遞增,因為,所以存在,使得,即,當時,,當時,,所以在上單調遞減,在上單調遞增,所以,因為,所以,又由題意可知,所以,解得,所以正整數k的取值集合為{1,2}.【點睛】本題主要考查導數的應用,利用導數研究極值問題一般轉化為導數的零點問題,恒成立問題要逐步消去參數,轉化為最值問題求解,適當構造函數是轉化的關鍵,本題綜合性較強,難度較大,側重考查數學抽象和邏輯推理的核心素養.19、(1);(2)①證明見解析;②【解析】
(1)由題意焦距為2,設點,代入橢圓,解得,從而四邊形的面積,由此能求出橢圓的標準方程.(2)①由題意,聯立直線與橢圓的方程,得,推導出,,,,由此猜想:直線過定點,從而能證明,,三點共線,直線過定點.②由題意設,,,,直線,代入橢圓標準方程:,得,推導出,,由此推導出(定值).【詳解】(1)由題意焦距為2,可設點,代入橢圓,得,解得,四邊形的面積,,,橢圓的標準方程為.(2)①由題意,聯立直線與橢圓的方程,得,,解得,從而,,,同理可得,,猜想:直線過定點,下證之:,,,,三點共線,直線過定點.②為定值,理由如下:由題意設,,,,直線,代入橢圓標準方程:,得,,,,(定值).【點睛】本題考查橢圓標準方程的求法,考查直線過定點的證明,考查兩直線的斜率的比值是否為定值的判斷與求法,考查橢圓、直線方程、韋達定理等基礎知識,考查運算求解能力,考查化歸與轉化思想,屬于中檔題.20、(1);(2).【解析】
(1)將直線和曲線化為普通方程,聯立直線和曲線,可得交點坐標,可得的值;(2)可得曲線的參數方程,利用點到直線的距離公式結合三角形的最值可得答案.【詳解】解:(1)直線的普通方程為,的普通方程.聯立方程組,解得與的交點為,,則.(2)曲線的參數方程為(為參數),故點的坐標為,從而點到直線的距離是,由此當時,取得最小值,且最小值為.【點睛】本題主要考查參數方程與普通方程的轉化及參數方程的基本性質、點到直線的距離公式等,屬于中檔題.21、(1)見解析,0(2)【解析】
(1)即該選手答完3道題后總得分,可能出現的情況為3道題都答對,答對2道答錯1道,答對1道答錯2道,3道題都答錯,進而求解即可;(2)當時,即答完8題后,正確的題數為5題,錯誤的題數是3題,又,則第一題答對,第二題第三題至少有一道答對,進而求解.【詳解】解:(1)的取值可能為,,1,3,又因為,故,,,,所以的分布列為:13所以(2)當時,即答完8題后,正確的題數為5題,錯誤的題數是3題,又已知,第一題答對,若第二題回答正確,則其余6題可任意答對3題;若第二題回答錯誤,第三題回答正確,則后5題可任意答對題,此時的概率為(或).【點睛】本題考查二項分布的分布列及期望,考查數據處理能力,考查分類討論思想.22、(1);(2).【解析】
(1)將直線的參數方程化為直角坐標方程,由點到直線距離公式可求得圓心到直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《營銷策略揭秘》課件
- 先鋒組織六項紀律剖析報告
- 《世博盛宴:上海世博會主題深度解讀》課件
- 5《我的家在這里》第一課時教學設計-2023-2024學年道德與法治三年級下冊統編版
- 2025年黔西南道路貨運輸從業資格證模擬考試題庫
- 荊門職業學院《海洋數學物理方程》2023-2024學年第一學期期末試卷
- 武漢城市學院《中國古典文學》2023-2024學年第二學期期末試卷
- 2025年呼和浩特貨運從業資格證模擬考試題庫及答案大全
- 昆明冶金高等專科學校《文化原典研讀(Ⅱ)》2023-2024學年第二學期期末試卷
- 四川省德陽市綿竹市2024-2025學年數學五下期末學業水平測試模擬試題含答案
- 統信服務器UOS操作系統-產品白皮書
- 糧庫火災的防控措施與技術
- 5G-Advanced通感融合仿真評估方法研究報告
- DB33 860-2012 危險化學品重大危險源安全監控管理規范
- 隱蔽工程影像資料采集要求和拍攝方法(網絡版)
- DB37T 1913-2011 金屬非金屬地下礦山特種作業人員配置
- 2025年日歷(日程安排-可直接打印)
- 大單元教學學歷案4 《現代詩二首》(略讀實踐課) 統編版語文四年級上冊
- 3.1 農業區位因素及其變化-看《種地吧》思考 課件 高一下學期 地理 人教版(2019)必修二
- 《保護板培訓教材》課件
- 綠色醫療器械設計
評論
0/150
提交評論