




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
吉林省吉林市龍潭區吉化第一高級中學2024屆高考百校聯考數學試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數,則對應的點在復平面內位于()A.第一象限 B.第二象限C.第三象限 D.第四象限2.已知是橢圓和雙曲線的公共焦點,是它們的-一個公共點,且,設橢圓和雙曲線的離心率分別為,則的關系為()A. B.C. D.3.已知甲盒子中有個紅球,個藍球,乙盒子中有個紅球,個藍球,同時從甲乙兩個盒子中取出個球進行交換,(a)交換后,從甲盒子中取1個球是紅球的概率記為.(b)交換后,乙盒子中含有紅球的個數記為.則()A. B.C. D.4.已知為定義在上的偶函數,當時,,則()A. B. C. D.5.已知,,分別是三個內角,,的對邊,,則()A. B. C. D.6.已知雙曲線,為坐標原點,、為其左、右焦點,點在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.7.已知等比數列的前項和為,且滿足,則的值是()A. B. C. D.8.一個空間幾何體的正視圖是長為4,寬為的長方形,側視圖是邊長為2的等邊三角形,俯視圖如圖所示,則該幾何體的體積為()A. B. C. D.9.定義在上的函數滿足,則()A.-1 B.0 C.1 D.210.“”是“函數(為常數)為冪函數”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件11.若不等式對于一切恒成立,則的最小值是()A.0 B. C. D.12.已知函數,,的零點分別為,,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是等比數列,且,,則__________,的最大值為__________.14.在中,角,,的對邊分別為,,.若;且,則周長的范圍為__________.15.在平面直角坐標系xOy中,直角三角形ABC的三個頂點都在橢圓上,其中A(0,1)為直角頂點.若該三角形的面積的最大值為,則實數a的值為_____.16.在中,,,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知矩陣的一個特征值為3,求另一個特征值及其對應的一個特征向量.18.(12分)設函數f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(19.(12分)已知是遞增的等差數列,,是方程的根.(1)求的通項公式;(2)求數列的前項和.20.(12分)設數列的前n項和滿足,,,(1)證明:數列是等差數列,并求其通項公式﹔(2)設,求證:.21.(12分)在平面直角坐標系中,將曲線(為參數)通過伸縮變換,得到曲線,設直線(為參數)與曲線相交于不同兩點,.(1)若,求線段的中點的坐標;(2)設點,若,求直線的斜率.22.(10分)已知中心在原點的橢圓的左焦點為,與軸正半軸交點為,且.(1)求橢圓的標準方程;(2)過點作斜率為、的兩條直線分別交于異于點的兩點、.證明:當時,直線過定點.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】
利用復數除法運算化簡,由此求得對應點所在象限.【題目詳解】依題意,對應點為,在第一象限.故選A.【題目點撥】本小題主要考查復數除法運算,考查復數對應點的坐標所在象限,屬于基礎題.2、A【解題分析】
設橢圓的半長軸長為,雙曲線的半長軸長為,根據橢圓和雙曲線的定義得:,解得,然后在中,由余弦定理得:,化簡求解.【題目詳解】設橢圓的長半軸長為,雙曲線的長半軸長為,由橢圓和雙曲線的定義得:,解得,設,在中,由余弦定理得:,化簡得,即.故選:A【題目點撥】本題主要考查橢圓,雙曲線的定義和性質以及余弦定理的應用,還考查了運算求解的能力,屬于中檔題.3、A【解題分析】分析:首先需要去分析交換后甲盒中的紅球的個數,對應的事件有哪些結果,從而得到對應的概率的大小,再者就是對隨機變量的值要分清,對應的概率要算對,利用公式求得其期望.詳解:根據題意有,如果交換一個球,有交換的都是紅球、交換的都是藍球、甲盒的紅球換的乙盒的藍球、甲盒的藍球交換的乙盒的紅球,紅球的個數就會出現三種情況;如果交換的是兩個球,有紅球換紅球、藍球換藍球、一藍一紅換一藍一紅、紅換藍、藍換紅、一藍一紅換兩紅、一藍一紅換亮藍,對應的紅球的個數就是五種情況,所以分析可以求得,故選A.點睛:該題考查的是有關隨機事件的概率以及對應的期望的問題,在解題的過程中,需要對其對應的事件弄明白,對應的概率會算,以及變量的可取值會分析是多少,利用期望公式求得結果.4、D【解題分析】
判斷,利用函數的奇偶性代入計算得到答案.【題目詳解】∵,∴.故選:【題目點撥】本題考查了利用函數的奇偶性求值,意在考查學生對于函數性質的靈活運用.5、C【解題分析】
原式由正弦定理化簡得,由于,可求的值.【題目詳解】解:由及正弦定理得.因為,所以代入上式化簡得.由于,所以.又,故.故選:C.【題目點撥】本題主要考查正弦定理解三角形,三角函數恒等變換等基礎知識;考查運算求解能力,推理論證能力,屬于中檔題.6、D【解題分析】
根據,先確定出的長度,然后利用雙曲線定義將轉化為的關系式,化簡后可得到的值,即可求漸近線方程.【題目詳解】如圖所示:因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.【題目點撥】本題考查根據雙曲線中的長度關系求解漸近線方程,難度一般.注意雙曲線的焦點到漸近線的距離等于虛軸長度的一半.7、C【解題分析】
利用先求出,然后計算出結果.【題目詳解】根據題意,當時,,,故當時,,數列是等比數列,則,故,解得,故選.【題目點撥】本題主要考查了等比數列前項和的表達形式,只要求出數列中的項即可得到結果,較為基礎.8、B【解題分析】
由三視圖確定原幾何體是正三棱柱,由此可求得體積.【題目詳解】由題意原幾何體是正三棱柱,.故選:B.【題目點撥】本題考查三視圖,考查棱柱的體積.解題關鍵是由三視圖不愿出原幾何體.9、C【解題分析】
推導出,由此能求出的值.【題目詳解】∵定義在上的函數滿足,∴,故選C.【題目點撥】本題主要考查函數值的求法,解題時要認真審題,注意函數性質的合理運用,屬于中檔題.10、A【解題分析】
根據冪函數定義,求得的值,結合充分條件與必要條件的概念即可判斷.【題目詳解】∵當函數為冪函數時,,解得或,∴“”是“函數為冪函數”的充分不必要條件.故選:A.【題目點撥】本題考查了充分必要條件的概念和判斷,冪函數定義的應用,屬于基礎題.11、C【解題分析】
試題分析:將參數a與變量x分離,將不等式恒成立問題轉化為求函數最值問題,即可得到結論.解:不等式x2+ax+1≥0對一切x∈(0,]成立,等價于a≥-x-對于一切成立,∵y=-x-在區間上是增函數∴∴a≥-∴a的最小值為-故答案為C.考點:不等式的應用點評:本題綜合考查了不等式的應用、不等式的解法等基礎知識,考查運算求解能力,考查化歸與轉化思想,屬于中檔題12、C【解題分析】
轉化函數,,的零點為與,,的交點,數形結合,即得解.【題目詳解】函數,,的零點,即為與,,的交點,作出與,,的圖象,如圖所示,可知故選:C【題目點撥】本題考查了數形結合法研究函數的零點,考查了學生轉化劃歸,數形結合的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、5【解題分析】,即的最大值為14、【解題分析】
先求角,再用余弦定理找到邊的關系,再用基本不等式求的范圍即可.【題目詳解】解:所以三角形周長故答案為:【題目點撥】考查正余弦定理、基本不等式的應用以及三條線段構成三角形的條件;基礎題.15、3【解題分析】
設直線AB的方程為y=kx+1,則直線AC的方程可設為yx+1,(k≠0),聯立方程得到B(,),故S,令t,得S,利用均值不等式得到答案.【題目詳解】設直線AB的方程為y=kx+1,則直線AC的方程可設為yx+1,(k≠0)由消去y,得(1+a2k2)x2+2a2kx=0,所以x=0或x∵A的坐標(0,1),∴B的坐標為(,k?1),即B(,),因此AB?,同理可得:AC?.∴Rt△ABC的面積為SAB?AC?令t,得S.∵t2,∴S△ABC.當且僅當,即t時,△ABC的面積S有最大值為.解之得a=3或a.∵a時,t2不符合題意,∴a=3.故答案為:3.【題目點撥】本題考查了橢圓內三角形面積的最值問題,意在考查學生的計算能力和轉化能力.16、1【解題分析】
由已知利用余弦定理可得,即可解得的值.【題目詳解】解:,,,由余弦定理,可得,整理可得:,解得或(舍去).故答案為:1.【題目點撥】本題主要考查余弦定理在解三角形中的應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、另一個特征值為,對應的一個特征向量【解題分析】
根據特征多項式的一個零點為3,可得,再回代到方程即可解出另一個特征值為,最后利用求特征向量的一般步驟,可求出其對應的一個特征向量.【題目詳解】矩陣的特征多項式為:,是方程的一個根,,解得,即方程即,,可得另一個特征值為:,設對應的一個特征向量為:則由,得得,令,則,所以矩陣另一個特征值為,對應的一個特征向量【題目點撥】本題考查了矩陣的特征值以及特征向量,需掌握特征多項式的計算形式,屬于基礎題.18、(I)π;(II)-【解題分析】
(I)化簡得到fx(II)f(α2)=2sin【題目詳解】(I)f(x)==2sin2x+(II)f(α2)=2sinα∈(π6,π),故α+故α+π12∈sin(2α+【題目點撥】本題考查了三角函數的周期,三角恒等變換,意在考查學生的計算能力和綜合應用能力.19、(1);(2).【解題分析】
(1)方程的兩根為,由題意得,在利用等差數列的通項公式即可得出;(2)利用“錯位相減法”、等比數列的前項和公式即可求出.【題目詳解】方程x2-5x+6=0的兩根為2,3.由題意得a2=2,a4=3.設數列{an}的公差為d,則a4-a2=2d,故d=,從而得a1=.所以{an}的通項公式為an=n+1.(2)設的前n項和為Sn,由(1)知=,則Sn=++…++,Sn=++…++,兩式相減得Sn=+-=+-,所以Sn=2-.考點:等差數列的性質;數列的求和.【方法點晴】本題主要考查了等差數列的通項公式、“錯位相減法”、等比數列的前項和公式、一元二次方程的解法等知識點的綜合應用,解答中方程的兩根為,由題意得,即可求解數列的通項公式,進而利用錯位相減法求和是解答的關鍵,著重考查了學生的推理能力與運算能力,屬于中檔試題.20、(1)證明見解析,;(2)證明見解析【解題分析】
(1)由,作差得到,進一步得到,再作差即可得到,從而使問題得到解決;(2),求和即可.【題目詳解】(1),,兩式相減:①用換,得②②—①,得,即,所以數列是等差數列,又,∴,,公差,所以.(II).【題目點撥】本題考查由與的關系求通項以及裂項相消法求數列的和,考查學生的計算能力,是一道容易題.21、(1);(2).【解題分析】
(1)由l參數方程與橢圓方程聯立可得A、B兩點參數和,再利用M點的參數為A、B兩點參數和的一半即可求M的坐標;(2)利用直線參數方程的幾何意義得到,再利用計算即可,但要注意判別式還要大于0.【題目詳解】(1)由已知,曲線的參數方程為(為參數),其普通方程為,當時,將(為參數)代入得,設直線l上A、B兩點所對應的參數為,中點M所對應的參數為,則,所以的坐標為;(2)將代入得,則,因為即,所以,故,由得,所以.【題目點撥】本題考查了伸縮變換、參數方程與普通方程的互化、直線參數方程的幾何意義等知識,考查學生的計算能力,是一道中檔題.22、(1);(2)見解析.【
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB63∕T 1865-2020 川西云杉播種育苗及造林技術規程
- 壁紙銷售計劃書
- 江蘇省連云港市2024-2025學年七年級下學期6月期末考試生物試卷(含詳解)
- 小學生超市活動策劃方案
- 小班春季親子活動方案
- 小小企業家研學活動方案
- 希臘移民活動方案
- 帽子派對活動方案
- 工程公司招聘策劃方案
- 居家體驗活動方案
- 應急工器具培訓課件
- 中國食用油市場調研及發展策略研究報告2025-2028版
- 2025年 浙江省考行測考試試題附答案
- JJF 2252-2025機動車檢測用渦流式金屬探傷儀校準規范
- 2025年安徽亳州機場管理有限公司招聘筆試參考題庫含答案解析
- 2025年四川省遂寧市中考語文試卷及答案
- 2025至2030年中國酮洛芬行業市場發展調研及投資方向分析報告
- 人教版(2024)八年級下冊物理期末復習:知識點清單+重難點考點 學案
- 2025年高考江蘇卷物理高考真題+解析(參考版)
- 四川省眉山市東坡區2023-2024學年高二下學期6月期末聯合考試數學試題(解析版)
- 2025新高考英語Ⅱ卷真題聽力原文
評論
0/150
提交評論