




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省南京市九中2024屆高三3月階段測試試題數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.甲、乙、丙三人參加某公司的面試,最終只有一人能夠被該公司錄用,得到面試結果以后甲說:丙被錄用了;乙說:甲被錄用了;丙說:我沒被錄用.若這三人中僅有一人說法錯誤,則下列結論正確的是()A.丙被錄用了 B.乙被錄用了 C.甲被錄用了 D.無法確定誰被錄用了2.已知數列的首項,且,其中,,,下列敘述正確的是()A.若是等差數列,則一定有 B.若是等比數列,則一定有C.若不是等差數列,則一定有 D.若不是等比數列,則一定有3.集合中含有的元素個數為()A.4 B.6 C.8 D.124.曲線在點處的切線方程為,則()A. B. C.4 D.85.已知f(x)=是定義在R上的奇函數,則不等式f(x-3)<f(9-x2)的解集為()A.(-2,6) B.(-6,2) C.(-4,3) D.(-3,4)6.某高中高三(1)班為了沖刺高考,營造良好的學習氛圍,向班內同學征集書法作品貼在班內墻壁上,小王,小董,小李各寫了一幅書法作品,分別是:“入班即靜”,“天道酬勤”,“細節決定成敗”,為了弄清“天道酬勤”這一作品是誰寫的,班主任對三人進行了問話,得到回復如下:小王說:“入班即靜”是我寫的;小董說:“天道酬勤”不是小王寫的,就是我寫的;小李說:“細節決定成敗”不是我寫的.若三人的說法有且僅有一人是正確的,則“入班即靜”的書寫者是()A.小王或小李 B.小王 C.小董 D.小李7.設,是非零向量,若對于任意的,都有成立,則A. B. C. D.8.已知,則的大小關系是()A. B. C. D.9.已知拋物線:的焦點為,過點的直線交拋物線于,兩點,其中點在第一象限,若弦的長為,則()A.2或 B.3或 C.4或 D.5或10.函數的圖象大致是()A. B.C. D.11.已知函數,,若對,且,使得,則實數的取值范圍是()A. B. C. D.12.某校8位學生的本次月考成績恰好都比上一次的月考成績高出50分,則以該8位學生這兩次的月考成績各自組成樣本,則這兩個樣本不變的數字特征是()A.方差 B.中位數 C.眾數 D.平均數二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中所有項的系數和為______,常數項為______.14.在的展開式中的系數為,則_______.15.曲線在點處的切線方程是__________.16.設全集,,,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在中,內角的對邊分別是,滿足條件.(1)求角;(2)若邊上的高為,求的長.18.(12分)已知函數.(1)若函數,試討論的單調性;(2)若,,求的取值范圍.19.(12分)已知函數,直線是曲線在處的切線.(1)求證:無論實數取何值,直線恒過定點,并求出該定點的坐標;(2)若直線經過點,試判斷函數的零點個數并證明.20.(12分)如圖,在多面體中,四邊形是菱形,,,,平面,,,是的中點.(Ⅰ)求證:平面平面;(ⅠⅠ)求直線與平面所成的角的正弦值.21.(12分)如圖,在直三棱柱中,,點分別為和的中點.(Ⅰ)棱上是否存在點使得平面平面?若存在,寫出的長并證明你的結論;若不存在,請說明理由.(Ⅱ)求二面角的余弦值.22.(10分)已知數列的各項都為正數,,且.(Ⅰ)求數列的通項公式;(Ⅱ)設,其中表示不超過x的最大整數,如,,求數列的前2020項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】
假設若甲被錄用了,若乙被錄用了,若丙被錄用了,再逐一判斷即可.【題目詳解】解:若甲被錄用了,則甲的說法錯誤,乙,丙的說法正確,滿足題意,若乙被錄用了,則甲、乙的說法錯誤,丙的說法正確,不符合題意,若丙被錄用了,則乙、丙的說法錯誤,甲的說法正確,不符合題意,綜上可得甲被錄用了,故選:C.【題目點撥】本題考查了邏輯推理能力,屬基礎題.2、C【解題分析】
根據等差數列和等比數列的定義進行判斷即可.【題目詳解】A:當時,,顯然符合是等差數列,但是此時不成立,故本說法不正確;B:當時,,顯然符合是等比數列,但是此時不成立,故本說法不正確;C:當時,因此有常數,因此是等差數列,因此當不是等差數列時,一定有,故本說法正確;D:當時,若時,顯然數列是等比數列,故本說法不正確.故選:C【題目點撥】本題考查了等差數列和等比數列的定義,考查了推理論證能力,屬于基礎題.3、B【解題分析】解:因為集合中的元素表示的是被12整除的正整數,那么可得為1,2,3,4,6,,12故選B4、B【解題分析】
求函數導數,利用切線斜率求出,根據切線過點求出即可.【題目詳解】因為,所以,故,解得,又切線過點,所以,解得,所以,故選:B【題目點撥】本題主要考查了導數的幾何意義,切線方程,屬于中檔題.5、C【解題分析】
由奇函數的性質可得,進而可知在R上為增函數,轉化條件得,解一元二次不等式即可得解.【題目詳解】因為是定義在R上的奇函數,所以,即,解得,即,易知在R上為增函數.又,所以,解得.故選:C.【題目點撥】本題考查了函數單調性和奇偶性的應用,考查了一元二次不等式的解法,屬于中檔題.6、D【解題分析】
根據題意,分別假設一個正確,推理出與假設不矛盾,即可得出結論.【題目詳解】解:由題意知,若只有小王的說法正確,則小王對應“入班即靜”,而否定小董說法后得出:小王對應“天道酬勤”,則矛盾;若只有小董的說法正確,則小董對應“天道酬勤”,否定小李的說法后得出:小李對應“細節決定成敗”,所以剩下小王對應“入班即靜”,但與小王的錯誤的說法矛盾;若小李的說法正確,則“細節決定成敗”不是小李的,則否定小董的說法得出:小王對應“天道酬勤”,所以得出“細節決定成敗”是小董的,剩下“入班即靜”是小李的,符合題意.所以“入班即靜”的書寫者是:小李.故選:D.【題目點撥】本題考查推理證明的實際應用.7、D【解題分析】
畫出,,根據向量的加減法,分別畫出的幾種情況,由數形結合可得結果.【題目詳解】由題意,得向量是所有向量中模長最小的向量,如圖,當,即時,最小,滿足,對于任意的,所以本題答案為D.【題目點撥】本題主要考查了空間向量的加減法,以及點到直線的距離最短問題,解題的關鍵在于用有向線段正確表示向量,屬于基礎題.8、B【解題分析】
利用函數與函數互為反函數,可得,再利用對數運算性質比較a,c進而可得結論.【題目詳解】依題意,函數與函數關于直線對稱,則,即,又,所以,.故選:B.【題目點撥】本題主要考查對數、指數的大小比較,屬于基礎題.9、C【解題分析】
先根據弦長求出直線的斜率,再利用拋物線定義可求出.【題目詳解】設直線的傾斜角為,則,所以,,即,所以直線的方程為.當直線的方程為,聯立,解得和,所以;同理,當直線的方程為.,綜上,或.選C.【題目點撥】本題主要考查直線和拋物線的位置關系,弦長問題一般是利用弦長公式來處理.出現了到焦點的距離時,一般考慮拋物線的定義.10、B【解題分析】
根據函數表達式,把分母設為新函數,首先計算函數定義域,然后求導,根據導函數的正負判斷函數單調性,對應函數圖像得到答案.【題目詳解】設,,則的定義域為.,當,,單增,當,,單減,則.則在上單增,上單減,.選B.【題目點撥】本題考查了函數圖像的判斷,用到了換元的思想,簡化了運算,同學們還可以用特殊值法等方法進行判斷.11、D【解題分析】
先求出的值域,再利用導數討論函數在區間上的單調性,結合函數值域,由方程有兩個根求參數范圍即可.【題目詳解】因為,故,當時,,故在區間上單調遞減;當時,,故在區間上單調遞增;當時,令,解得,故在區間單調遞減,在區間上單調遞增.又,且當趨近于零時,趨近于正無窮;對函數,當時,;根據題意,對,且,使得成立,只需,即可得,解得.故選:D.【題目點撥】本題考查利用導數研究由方程根的個數求參數范圍的問題,涉及利用導數研究函數單調性以及函數值域的問題,屬綜合困難題.12、A【解題分析】
通過方差公式分析可知方差沒有改變,中位數、眾數和平均數都發生了改變.【題目詳解】由題可知,中位數和眾數、平均數都有變化.本次和上次的月考成績相比,成績和平均數都增加了50,所以沒有改變,根據方差公式可知方差不變.故選:A【題目點撥】本題主要考查樣本的數字特征,意在考查學生對這些知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、3-260【解題分析】
(1)令求得所有項的系數和;(2)先求出展開式中的常數項與含的系數,再求展開式中的常數項.【題目詳解】將代入,得所有項的系數和為3.因為的展開式中含的項為,的展開式中含常數項,所以的展開式中的常數項為.故答案為:3;-260【題目點撥】本題考查利用二項展開式的通項公式解決二項展開式的特殊項問題,屬于基礎題.14、2【解題分析】
首先求出的展開項中的系數,然后根據系數為即可求出的取值.【題目詳解】由題知,當時有,解得.故答案為:.【題目點撥】本題主要考查了二項式展開項的系數,屬于簡單題.15、【解題分析】
利用導數的幾何意義計算即可.【題目詳解】由已知,,所以,又,所以切線方程為,即.故答案為:【題目點撥】本題考查導數的幾何意義,考查學生的基本計算能力,要注意在某點處的切線與過某點的切線的區別,是一道容易題.16、【解題分析】
先求出集合,,然后根據交集、補集的定義求解即可.【題目詳解】解:,或;∴;∴.故答案為:.【題目點撥】本題主要考查集合的交集、補集運算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1).(2)【解題分析】
(1)利用正弦定理的邊角互化可得,再根據,利用兩角和的正弦公式即可求解.(2)已知,由知,在中,解出即可.【題目詳解】(1)由正弦定理知由己知,而∴,(2)已知,則由知先求∴∴∴【題目點撥】本題主要考查了正弦定理解三角形、三角形的性質、兩角和的正弦公式,需熟記定理與公式,屬于基礎題.18、(1)答案不唯一,具體見解析(2)【解題分析】
(1)由于函數,得出,分類討論當和時,的正負,進而得出的單調性;(2)求出,令,得,設,通過導函數,可得出在上的單調性和值域,再分類討論和時,的單調性,再結合,恒成立,即可求出的取值范圍.【題目詳解】解:(1)因為,所以,①當時,,在上單調遞減.②當時,令,則;令,則,所以在單調遞增,在上單調遞減.綜上所述,當時,在上單調遞減;當時,在上單調遞增,在上單調遞減.(2)因為,可知,,令,得.設,則.當時,,在上單調遞增,所以在上的值域是,即.當時,沒有實根,且,在上單調遞減,,符合題意.當時,,所以有唯一實根,當時,,在上單調遞增,,不符合題意.綜上,,即的取值范圍為.【題目點撥】本題考查利用導數研究函數的單調性和根據恒成立問題求參數范圍,還運用了構造函數法,還考查分類討論思想和計算能力,屬于難題.19、(1)見解析,(2)函數存在唯一零點.【解題分析】
(1)首先求出導函數,利用導數的幾何意義求出處的切線斜率,利用點斜式即可求出切線方程,根據方程即可求出定點.(2)由(1)求出函數,令方程可轉化為記,利用導數判斷函數在上單調遞增,根據,由零點存在性定理即可求出零點個數.【題目詳解】所以直線方程為即,恒過點將代入直線方程,得考慮方程即,等價于記,則于是函數在上單調遞增,又所以函數在區間上存在唯一零點,即函數存在唯一零點.【題目點撥】本題考查了導數的幾何意義、直線過定點、利用導數研究函數的單調性、零點存在性定理,屬于難題.20、(Ⅰ)詳見解析;(Ⅱ).【解題分析】試題分析:(Ⅰ)連接交于,得,所以面,又,得面,即可利用面面平行的判定定理,證得結論;(Ⅱ)如圖,以O為坐標原點,建立空間直角坐標系,求的平面的一個法向量,利用向量和向量夾角公式,即可求解與平面所成角的正弦值.試題解析:(Ⅰ)連接BD交AC于O,易知O是BD的中點,故OG//BE,BE面BEF,OG在面BEF外,所以OG//面BEF;又EF//AC,AC在面BEF外,AC//面BEF,又AC與OG相交于點O,面ACG有兩條相交直線與面BEF平行,故面ACG∥面BEF;(Ⅱ)如圖,以O為坐標原點,分別以OC、OD、OF為x、y、z軸建立空間直角坐標系,則,,,,,,,設面ABF的法向量為,依題意有,,令,,,,,直線AD與面ABF成的角的正弦值是.21、(Ⅰ)存在點滿足題意,且,證明詳見解析;(Ⅱ).【解題分析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 草坪養護管理協議
- 購房交易信息確認協議
- 文化用品批發銷售代理協議
- 助學就業保障協議書與助學貸款補充合同8篇
- 浙江省房屋買賣補充協議7篇
- 【正版授權】 IEC 60092-376:2025 RLV EN Electrical installations in ships - Part 376: Cables for control and instrumentation circuits 150/250 V (300 V)
- 2025年信息化管理專業考試試卷及答案
- 2025年體育競技與科學研究試題及答案
- 2025年安全工程師執業資格考試卷及答案
- 2025年環境工程基礎課程考試試卷及答案
- 2025年中國冷庫用叉車數據監測研究報告
- 2025年化妝師職業技能考試試題及答案
- 2025年護士考試心理健康試題及答案
- 旅游法規教程試題及答案
- GA 1812.1-2024銀行系統反恐怖防范要求第1部分:人民幣發行庫
- 工程測量學概述
- 2025中信建投證券股份限公司校園招聘易考易錯模擬試題(共500題)試卷后附參考答案
- 2025屆天津市十二區重點學校高三下學期畢業聯考(一)英語試題(含答案)
- 《陸上風電場工程概算定額》NBT 31010-2019
- 生物醫學電子學智慧樹知到期末考試答案章節答案2024年天津大學
- 干部人事檔案轉遞單表樣
評論
0/150
提交評論