




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆湖北省武漢新區第一學校高三第二學期期終教學質量監控測試數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,是圓的一條直徑,為半圓弧的兩個三等分點,則()A. B. C. D.2.已知角的終邊經過點P(),則sin()=A. B. C. D.3.設,,則的值為()A. B.C. D.4.已知函數,若關于的方程恰好有3個不相等的實數根,則實數的取值范圍為()A. B. C. D.5.已知復數滿足,則的值為()A. B. C. D.26.已知拋物線:,點為上一點,過點作軸于點,又知點,則的最小值為()A. B. C.3 D.57.為了得到函數的圖象,只需把函數的圖象上所有的點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度8.復數,若復數在復平面內對應的點關于虛軸對稱,則等于()A. B. C. D.9.設且,則下列不等式成立的是()A. B. C. D.10.如圖,在正方體中,已知、、分別是線段上的點,且.則下列直線與平面平行的是()A. B. C. D.11.已知雙曲線(,),以點()為圓心,為半徑作圓,圓與雙曲線的一條漸近線交于,兩點,若,則的離心率為()A. B. C. D.12.已知角的頂點為坐標原點,始邊與軸的非負半軸重合,終邊上有一點,則().A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某學校高一、高二、高三年級的學生人數之比為,現按年級采用分層抽樣的方法抽取若干人,若抽取的高三年級為12人,則抽取的樣本容量為________人.14.平面向量與的夾角為,,,則__________.15.將含有甲、乙、丙的6人平均分成兩組參加“文明交通”志愿者活動,其中一組指揮交通,一組分發宣傳資料,則甲、乙至少一人參加指揮交通且甲、丙不在同一個組的概率為__________.16.在矩形中,,為的中點,將和分別沿,翻折,使點與重合于點.若,則三棱錐的外接球的表面積為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)隨著改革開放的不斷深入,祖國不斷富強,人民的生活水平逐步提高,為了進一步改善民生,2019年1月1日起我國實施了個人所得稅的新政策,其政策的主要內容包括:(1)個稅起征點為5000元;(2)每月應納稅所得額(含稅)收入個稅起征點專項附加扣除;(3)專項附加扣除包括①贍養老人費用②子女教育費用③繼續教育費用④大病醫療費用等.其中前兩項的扣除標準為:①贍養老人費用:每月扣除2000元②子女教育費用:每個子女每月扣除1000元.新個稅政策的稅率表部分內容如下:級數一級二級三級四級每月應納稅所得額(含稅)不超過3000元的部分超過3000元至12000元的部分超過12000元至25000元的部分超過25000元至35000元的部分稅率3102025(1)現有李某月收入29600元,膝下有一名子女,需要贍養老人,除此之外,無其它專項附加扣除.請問李某月應繳納的個稅金額為多少?(2)為研究月薪為20000元的群體的納稅情況,現收集了某城市500名的公司白領的相關資料,通過整理資料可知,有一個孩子的有400人,沒有孩子的有100人,有一個孩子的人中有300人需要贍養老人,沒有孩子的人中有50人需要贍養老人,并且他們均不符合其它專項附加扣除(受統計的500人中,任何兩人均不在一個家庭).若他們的月收入均為20000元,依據樣本估計總體的思想,試估計在新個稅政策下這類人群繳納個稅金額的分布列與期望.18.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E,F分別是棱AB,PC的中點.求證:(1)EF//平面PAD;(2)平面PCE⊥平面PCD.19.(12分)在國家“大眾創業,萬眾創新”戰略下,某企業決定加大對某種產品的研發投入.為了對新研發的產品進行合理定價,將該產品按事先擬定的價格試銷,得到一組檢測數據如表所示:試銷價格(元)產品銷量(件)已知變量且有線性負相關關系,現有甲、乙、丙三位同學通過計算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學的計算結果是正確的.(1)試判斷誰的計算結果正確?(2)若由線性回歸方程得到的估計數據與檢測數據的誤差不超過,則稱該檢測數據是“理想數據”,現從檢測數據中隨機抽取個,求“理想數據”的個數的分布列和數學期望.20.(12分)選修4-5:不等式選講已知函數f(x)=log2(|x+1|+|x﹣2|﹣m).(1)當m=7時,求函數f(x)的定義域;(2)若關于x的不等式f(x)≥2的解集是R,求m的取值范圍.21.(12分)在中,角所對的邊分別為,若,,,且.(1)求角的值;(2)求的最大值.22.(10分)已知.(1)當時,求不等式的解集;(2)若時不等式成立,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】
連接、,即可得到,,再根據平面向量的數量積及運算律計算可得;【題目詳解】解:連接、,,是半圓弧的兩個三等分點,,且,所以四邊形為棱形,.故選:B【題目點撥】本題考查平面向量的數量積及其運算律的應用,屬于基礎題.2、A【解題分析】
由題意可得三角函數的定義可知:,,則:本題選擇A選項.3、D【解題分析】
利用倍角公式求得的值,利用誘導公式求得的值,利用同角三角函數關系式求得的值,進而求得的值,最后利用正切差角公式求得結果.【題目詳解】,,,,,,,,故選:D.【題目點撥】該題考查的是有關三角函數求值問題,涉及到的知識點有誘導公式,正切倍角公式,同角三角函數關系式,正切差角公式,屬于基礎題目.4、D【解題分析】
討論,,三種情況,求導得到單調區間,畫出函數圖像,根據圖像得到答案.【題目詳解】當時,,故,函數在上單調遞增,在上單調遞減,且;當時,;當時,,,函數單調遞減;如圖所示畫出函數圖像,則,故.故選:.【題目點撥】本題考查了利用導數求函數的零點問題,意在考查學生的計算能力和應用能力.5、C【解題分析】
由復數的除法運算整理已知求得復數z,進而求得其模.【題目詳解】因為,所以故選:C【題目點撥】本題考查復數的除法運算與求復數的模,屬于基礎題.6、C【解題分析】
由,再運用三點共線時和最小,即可求解.【題目詳解】.故選:C【題目點撥】本題考查拋物線的定義,合理轉化是本題的關鍵,注意拋物線的性質的靈活運用,屬于中檔題.7、D【解題分析】
通過變形,通過“左加右減”即可得到答案.【題目詳解】根據題意,故只需把函數的圖象上所有的點向右平移個單位長度可得到函數的圖象,故答案為D.【題目點撥】本題主要考查三角函數的平移變換,難度不大.8、A【解題分析】
先通過復數在復平面內對應的點關于虛軸對稱,得到,再利用復數的除法求解.【題目詳解】因為復數在復平面內對應的點關于虛軸對稱,且復數,所以所以故選:A【題目點撥】本題主要考查復數的基本運算和幾何意義,屬于基礎題.9、A【解題分析】項,由得到,則,故項正確;項,當時,該不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤;項,當,時,,即不等式不成立,故項錯誤.綜上所述,故選.10、B【解題分析】
連接,使交于點,連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【題目詳解】如圖,連接,使交于點,連接、,則為的中點,在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【題目點撥】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.11、A【解題分析】
求出雙曲線的一條漸近線方程,利用圓與雙曲線的一條漸近線交于兩點,且,則可根據圓心到漸近線距離為列出方程,求解離心率.【題目詳解】不妨設雙曲線的一條漸近線與圓交于,因為,所以圓心到的距離為:,即,因為,所以解得.故選A.【題目點撥】本題考查雙曲線的簡單性質的應用,考查了轉化思想以及計算能力,屬于中檔題.對于離心率求解問題,關鍵是建立關于的齊次方程,主要有兩個思考方向,一方面,可以從幾何的角度,結合曲線的幾何性質以及題目中的幾何關系建立方程;另一方面,可以從代數的角度,結合曲線方程的性質以及題目中的代數的關系建立方程.12、B【解題分析】
根據角終邊上的點坐標,求得,代入二倍角公式即可求得的值.【題目詳解】因為終邊上有一點,所以,故選:B【題目點撥】此題考查二倍角公式,熟練記憶公式即可解決,屬于簡單題目.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
根據分層抽樣的定義建立比例關系即可得到結論.【題目詳解】設抽取的樣本為,則由題意得,解得.故答案為:【題目點撥】本題考查了分層抽樣的知識,算出抽樣比是解題的關鍵,屬于基礎題.14、【解題分析】
由平面向量模的計算公式,直接計算即可.【題目詳解】因為平面向量與的夾角為,所以,所以;故答案為【題目點撥】本題主要考查平面向量模的計算,只需先求出向量的數量積,進而即可求出結果,屬于基礎題型.15、【解題分析】
先求出總的基本事件數,再求出甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件數,然后根據古典概型求解.【題目詳解】6人平均分成兩組參加“文明交通”志愿者活動,其中一組指揮交通,一組分發宣傳資料的基本事件總數共有個,甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件個數有:個,所以甲、乙至少一人參加指揮交通且甲、丙不在同一組的概率為.故答案為:【題目點撥】本題主要考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,是中檔題.16、.【解題分析】
計算外接圓的半徑,并假設外接球的半徑為R,可得球心在過外接圓圓心且垂直圓面的垂線上,然后根據面,即可得解.【題目詳解】由題意可知,,所以可得面,設外接圓的半徑為,由正弦定理可得,即,,設三棱錐外接球的半徑,因為外接球的球心為過底面圓心垂直于底面的直線與中截面的交點,則,所以外接球的表面積為.故答案為:.【題目點撥】本題考查三棱錐的外接球的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)李某月應繳納的個稅金額為元,(2)分布列詳見解析,期望為1150元【解題分析】
(1)分段計算個人所得稅額;
(2)隨機變量X的所有可能的取值為990,1190,1390,1590,分別求出各值對應的概率,列出分布列,求期望即可.【題目詳解】解:(1)李某月應納稅所得額(含稅)為:29600?5000?1000?2000=21600元
不超過3000的部分稅額為3000×3%=90元
超過3000元至12000元的部分稅額為9000×10%=900元,
超過12000元至25000元的部分稅額為9600×20%=1920元
所以李某月應繳納的個稅金額為90+900+1920=2910元,
(2)有一個孩子需要贍養老人應納稅所得額(含稅)為:20000?5000?1000?2000=12000元,
月應繳納的個稅金額為:90+900=990元
有一個孩子不需要贍養老人應納稅所得額(含稅)為:20000?5000?1000=14000元,
月應繳納的個稅金額為:90+900+400=1390元;
沒有孩子需要贍養老人應納稅所得額(含稅)為:20000?5000?2000=13000元,
月應繳納的個稅金額為:90+900+200=1190元;
沒有孩子不需要贍養老人應納稅所得額(含稅)為:20000?5000=15000元,
月應繳納的個稅金額為:90+900+600=1590元;
.
所以隨機變量X的分布列為:990119013901590.【題目點撥】本題考查了分段函數的應用與函數值計算,考查了隨機變量的概率分布列與數學期望,屬于中檔題.18、(1)見解析;(2)見解析【解題分析】
(1)取的中點構造平行四邊形,得到,從而證出平面;(2)先證平面,再利用面面垂直的判定定理得到平面平面.【題目詳解】證明:(1)如圖,取的中點,連接,,是棱的中點,底面是矩形,,且,又,分別是棱,的中點,,且,,且,四邊形為平行四邊形,,又平面,平面,平面;(2),點是棱的中點,,又,,平面,平面,,底面是矩形,,平面,平面,且,平面,又平面,,,,又平面,平面,且,平面,又平面,平面平面.【題目點撥】本題主要考查線面平行的判定,面面垂直的判定,首選判定定理,是中檔題.19、(1)乙同學正確(2)分布列見解析,【解題分析】
(1)由已知可得甲不正確,求出樣本中心點代入驗證,即可得出結論;(2)根據(1)中得到的回歸方程,求出估值,得到“理想數據”的個數,確定“理想數據”的個數的可能值,并求出概率,得到分布列,即可求解.【題目詳解】(1)已知變量具有線性負相關關系,故甲不正確,,代入兩個回歸方程,驗證乙同學正確,故回歸方程為:(2)由(1)得到的回歸方程,計算估計數據如下表:“理想數據”有3個,故“理想數據”的個數的取值為:.,,于是“理想數據”的個數的分布列【題目點撥】本題考查樣本回歸中心點與線性回歸直線方程關系,以及離散型隨機變量的分布列和期望,意在考查邏輯推理、數學計算能力,屬于中檔題.20、(1),(2)【解題分析】試題分析:用零點分區間討論法解含絕對值的不等式,根據絕對值三角不等式得出,不等式|x+1|+|x﹣2|≥m+4解集是R,只需m+4≤3,得出的范圍.試題解析:(1)由題設知:|x+1|+|x﹣2|>7,不等式的解集是以下不等式組解集的并集:,或,或,解得函數f(x)的定義域為(﹣∞,﹣3)∪(4,+∞).(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權】 IEC 60092-376:2025 RLV EN Electrical installations in ships - Part 376: Cables for control and instrumentation circuits 150/250 V (300 V)
- 2025年信息化管理專業考試試卷及答案
- 2025年體育競技與科學研究試題及答案
- 2025年安全工程師執業資格考試卷及答案
- 2025年環境工程基礎課程考試試卷及答案
- 2025年氣象學專業考試題及答案
- 一級建造師的試題及答案
- 燒烤學徒合同協議書模板
- 2025年Β-內酰胺類抗菌藥物合作協議書
- 思修第五章遵守道德規范錘煉高尚品格
- 成人腦室外引流護理-中華護理學會團體 標準
- 2024年經濟師考試旅游經濟(中級)專業知識和實務試卷及解答參考
- 《管道用消氣過濾器》
- 初級應急救援員理論考試復習題及答案
- 醫院培訓課件:《外科手術部位感染的預防與處理措施》
- 2024年福建高考真題化學試題(解析版)
- DB11∕T 243-2014 戶外廣告設施技術規范
- 林俊杰專輯歌詞更新至-學不會
- 2024至2030年中國售電公司投資熱點研究報告
- 廣西專升本(高等數學)模擬試卷3(共212題)
- 天津二手房買賣合同范本大全(2024版)
評論
0/150
提交評論