




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年湖南長沙一中學岳麓中學數學九上期末綜合測試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題3分,共30分)1.如圖,∠1=∠2,要使△ABC∽△ADE,只需要添加一個條件即可,這個條件不可能是()A.∠B=∠D B.∠C=∠E C. D.2.如圖,D是等邊△ABC外接圓上的點,且∠CAD=20°,則∠ACD的度數為()A.20° B.30° C.40° D.45°3.己知點都在反比例函數的圖象上,則()A. B. C. D.4.將拋物線先向左平移2個單位,再向下平移3個單位,得到的新拋物線的表達式為()A. B.C. D.5.已知銳角α,且sinα=cos38°,則α=()A.38° B.62° C.52° D.72°6.如圖,下列條件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD?AC D.7.下列計算①②③④⑤,其中任意抽取一個,運算結果正確的概率是()A. B. C. D.8.下列一元二次方程中,有兩個不相等實數根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=09.若關于的方程有兩個相等的根,則的值為()A.10 B.10或14 C.-10或14 D.10或-1410.如圖,?ABCD的對角線相交于點O,且,過點O作交BC于點E,若的周長為10,則?ABCD的周長為A.14 B.16 C.20 D.18二、填空題(每小題3分,共24分)11.如圖,在△ABC中,AB=4,BC=7,∠B=60°,將△ABC繞點A按順時針旋轉一定角度得到△ADE,當點B的對應點D恰好落在BC邊上時,則CD的長為__________.12.圓內接正六邊形一邊所對的圓周角的度數是__________.13.如圖,已知圓周角∠ACB=130°,則圓心角∠AOB=______.14.某劇場共有個座位,已知每行的座位數都相同,且每行的座位數比總行數少,求每行的座位數.如果設每行有個座位,根據題意可列方程為_____________.15.如圖,矩形ABCD中,AB=1,AD=.以A為圓心,AD的長為半徑做弧交BC邊于點E,則圖中的弧長是_______.16.拋物線y=x2+2x+3的頂點坐標是_____________.17.如圖,我們把一個半圓與拋物線的一部分圍成的封閉圖形稱為“果圓”.已知點A、B、C、D分別是“果圓”與坐標軸的交點,AB為半圓的直徑,拋物線的解析式為y=x2﹣2x﹣3,求這個“果圓”被y軸截得的線段CD的長.18.計算:__________.三、解答題(共66分)19.(10分)如圖,在平面直角坐標系中,△ABC頂點的坐標分別為A(﹣3,3),B(﹣5,2),C(﹣1,1).(1)以點C為位似中心,作出△ABC的位似圖形△A1B1C,使其位似比為1:2,且A?B?C位于點C的異側,并表示出點A1的坐標.(2)作出△ABC繞點C順時針旋轉90°后的圖形△A2B2C.(3)在(2)的條件下求出點B經過的路徑長(結果保留π).20.(6分)某養殖場計劃用96米的竹籬笆圍成如圖所示的①、②、③三個養殖區域,其中區域①是正方形,區域②和③是矩形,且AG∶BG=3∶1.設BG的長為1x米.(1)用含x的代數式表示DF=;(1)x為何值時,區域③的面積為180平方米;(3)x為何值時,區域③的面積最大?最大面積是多少?21.(6分)定義:如果三角形的兩個內角與滿足,那么稱這樣的三角形為“類直角三角形”.嘗試運用(1)如圖1,在中,,,,是的平分線.①證明是“類直角三角形”;②試問在邊上是否存在點(異于點),使得也是“類直角三角形”?若存在,請求出的長;若不存在,請說明理由.類比拓展(2)如圖2,內接于,直徑,弦,點是弧上一動點(包括端點,),延長至點,連結,且,當是“類直角三角形”時,求的長.22.(8分)某中學現要從甲、乙兩位男生和丙、丁兩位女生中,選派兩位同學代表學校參加全市漢字聽寫大賽.(1)請用樹狀圖或列表法列舉出各種可能選派的結果;(2)求恰好選派一男一女兩位同學參賽的概率.23.(8分)已知二次函數.(1)當二次函數的圖象經過坐標原點O(0,0)時,求二次函數的解析式;(2)如圖,當m=2時,該拋物線與y軸交于點C,頂點為D,求C、D兩點的坐標;(3)在(2)的條件下,x軸上是否存在一點P,使得PC+PD最短?若P點存在,求出P點的坐標;若P點不存在,請說明理由.24.(8分)如圖,在平面直角坐標系中,點的坐標分別是,.(1)將繞點逆時針旋轉得到,點,對應點分別是,,請在圖中畫出,并寫出,的坐標;(2)以點為位似中心,將作位似變換且縮小為原來的,在網格內畫出一個符合條件的.25.(10分)如圖,AN是⊙O的直徑,四邊形ABMN是矩形,與圓相交于點E,AB=15,D是⊙O上的點,DC⊥BM,與BM交于點C,⊙O的半徑為R=1.(1)求BE的長.(2)若BC=15,求的長.26.(10分)如圖,在△ABC中,∠A為鈍角,AB=25,AC=39,,求tanC和BC的長.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】先求出∠DAE=∠BAC,再根據相似三角形的判定方法分析判斷即可.【詳解】∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、添加∠B=∠D可利用兩角法:有兩組角對應相等的兩個三角形相似可得△ABC∽△ADE,故此選項不合題意;B、添加∠C=∠E可利用兩角法:有兩組角對應相等的兩個三角形相似可得△ABC∽△ADE,故此選項不合題意;C、添加可利用兩邊及其夾角法:兩組邊對應成比例且夾角相等的兩個三角形相似,故此選項不合題意;D、添加不能證明△ABC∽△ADE,故此選項符合題意;故選:D.【點睛】本題考查相似三角形的判定,解題的關鍵是掌握相似三角形判定方法:兩角法、兩邊及其夾角法、三邊法、平行線法.2、C【分析】根據圓內接四邊形的性質得到∠D=180°-∠B=120°,根據三角形內角和定理計算即可.【詳解】∴∠B=60°,∵四邊形ABCD是圓內接四邊形,∴∠D=180°?∠B=120°,∴∠ACD=180°?∠DAC?∠D=40°,故選C.3、D【解析】試題解析:∵點A(1,y1)、B(1,y1)、C(-3,y3)都在反比例函數y=的圖象上,∴y1=-;y1=-1;y3=,
∵>->-1,
∴y3>y1>y1.
故選D.4、D【分析】根據拋物線的平移規律:左加右減,上加下減,即可得解.【詳解】由題意,得平移后的拋物線為故選:D.【點睛】此題主要考查拋物線的平移規律,熟練掌握,即可解題.5、C【分析】根據一個角的正弦值等于它的余角的余弦值求解即可.【詳解】∵sinα=cos38°,
∴α=90°-38°=52°.
故選C.【點睛】本題考查了銳角三角函數的性質,掌握正余弦的轉換方法:一個角的正弦值等于它的余角的余弦值.6、D【分析】根據有兩個角對應相等的三角形相似,以及根據兩邊對應成比例且夾角相等的兩個三角形相似,分別判斷得出即可.【詳解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此選項不合題意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此選項不合題意;C、∵AB2=AD?AC,∴,∠A=∠A,△ABC∽△ADB,故此選項不合題意;D、=不能判定△ADB∽△ABC,故此選項符合題意.故選D.【點睛】點評:本題考查了相似三角形的判定,利用了有兩個角對應相等的三角形相似,兩邊對應成比例且夾角相等的兩個三角形相似.7、A【解析】根據計算結果和概率公式求解即可.【詳解】運算結果正確的有⑤,則運算結果正確的概率是,故選:A.【點睛】考核知識點:求概率.熟記公式是關鍵.8、B【解析】分析:根據一元二次方程根的判別式判斷即可.詳解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有兩個相等實數根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有兩個不相等實數根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程無實根;D、(x-1)2+1=0.(x-1)2=-1,則方程無實根;故選B.點睛:本題考查的是一元二次方程根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:①當△>0時,方程有兩個不相等的實數根;②當△=0時,方程有兩個相等的實數根;③當△<0時,方程無實數根.9、D【分析】根據題意利用根的判別式,進行分析計算即可得出答案.【詳解】解:∵關于的方程有兩個相等的根,∴,即有,解得10或-14.故選:D.【點睛】本題考查的是根的判別式,熟知一元二次方程中,當時,方程有兩個相等的兩個實數根是解答此題的關鍵.10、C【解析】由平行四邊形的性質得出,,,再根據線段垂直平分線的性質得出,由的周長得出,即可求出平行四邊形ABCD的周長.【詳解】解:四邊形ABCD是平行四邊形,,,,,,的周長為10,,平行四邊形ABCD的周長;故選:C.【點睛】本題考查了平行四邊形的性質、線段垂直平分線的性質以及三角形、平行四邊形周長的計算;熟練掌握平行四邊形的性質,并能進行推理計算是解決問題的關鍵.二、填空題(每小題3分,共24分)11、3【解析】試題解析:由旋轉的性質可得:AD=AB,∴△ABD是等邊三角形,∴BD=AB,∵AB=4,BC=7,∴CD=BC?BD=7?4=3.故答案為3.12、30°或150°【分析】求出一條邊所對的圓心角的度數,再根據圓周角和圓心角的關系解答.【詳解】解:圓內接正六邊形的邊所對的圓心角360°÷6=60°,圓內接正六邊形的一條邊所對的弧可能是劣弧,也可能是優弧,
根據一條弧所對的圓周角等于它所對圓心角的一半,
所以圓內接正六邊形的一條邊所對的圓周角的度數是30°或150°,故答案為30°或150°.【點睛】本題考查學生對正多邊形的概念掌握和計算的能力,涉及的知識點有正多邊形的中心角、圓周角與圓心角的關系,屬于基礎題,要注意分兩種情況討論.13、100゜【分析】根據圓周角定理,由∠ACB=130°,得到它所對的圓心角∠α=2∠ACB=260°,用360°-260°即可得到圓心角∠AOB.【詳解】如圖,∵∠α=2∠ACB,而∠ACB=130°,∴∠α=260°,∴∠AOB=360°-260°=100°.故答案為100°.14、x(x+12)=1【分析】設每行有個座位,根據等量關系,列出一元二次方程,即可.【詳解】設每行有個座位,則總行數為(x+12)行,根據題意,得:x(x+12)=1,故答案是:x(x+12)=1.【點睛】本題主要考查一元二次方程的實際應用,找出等量關系,列出方程,是解題的關鍵.15、π【分析】根據題意可得AD=AE=,則可以求出sin∠AEB,可以判斷出可判斷出∠AEB=45°,進一步求解∠DAE=∠AEB=45°,代入弧長得到計算公式可得出弧DE的長度.【詳解】解:∵AD半徑畫弧交BC邊于點E,AD=
∴AD=AE=,
又∵AB=1,
∴∴∠AEB=45°,∵四邊形ABCD是矩形∴AD∥BC∴∠DAE=∠AEB=45°,
故可得弧DC的長度為==π,
故答案為:π.【點睛】此題考查了弧長的計算公式,解答本題的關鍵是求出∠DAE的度數,要求我們熟練掌握弧長的計算公式及解直角三角形的知識.16、(﹣1,2)【詳解】解:將二次函數轉化成頂點式可得:y=,則函數的頂點坐標為(-1,2)故答案為:(-1,2)【點睛】本題考查二次函數的頂點坐標.17、這個“果圓”被y軸截得的線段CD的長3+.【分析】連接AC,BC,有拋物線的解析式可求出A,B,C的坐標,進而求出AO,BO,DO的長,在直角三角形ACB中,利用射影定理可求出CO的長,進而可求出CD的長.【詳解】連接AC,BC,∵拋物線的解析式為y=(x-1)2-4,∴點D的坐標為(0,?3),∴OD的長為3,設y=0,則0=(x-1)2-4,解得:x=?1或3,∴A(?1,0),B(3,0)∴AO=1,BO=3,∵AB為半圓的直徑,∴∠ACB=90°,∵CO⊥AB,∴CO2=AO?BO=3,∴CO=,∴CD=CO+OD=3+,故答案為3+.18、【分析】本題涉及零指數冪、負整數指數冪、二次根式化簡三個考點,在計算時需要針對每個考點分別進行計算,然后再進行加減運算即可.【詳解】3-4-1=-2.故答案為:-2.【點睛】本題考查的是實數的運算能力,注意要正確掌握運算順序及運算法則.三、解答題(共66分)19、(1)見解析,A1(3,﹣3);(2)見解析;(3)【分析】(1)延長BC到B1,使B1C=2BC,延長AC到A1,使A1C=2AC,再順次連接即可得△A1B1C,再寫出A1坐標即可;(2)分別作出A,B繞C點順時針旋轉90°后的對應點A2,B2,再順次連接即可得△A2B2C.(3)點B的運動路徑為以C為圓心,圓心角為90°的弧長,利用弧長公式即可求解.【詳解】解:(1)如圖,△A1B1C為所作,點A1的坐標為(3,﹣3);(2)如圖,△A2B2C為所作;(3)CB=,所以點B經過的路徑長=π.【點睛】本題考查網格作圖與弧長計算,熟練掌握位似與旋轉作圖,以及弧長公式是解題的關鍵.20、(1)48-11x;(1)x為1或3;(3)x為1時,區域③的面積最大,為140平方米【分析】(1)將DF、EC以外的線段用x表示出來,再用96減去所有線段的長再除以1可得DF的長度;(1)將區域③圖形的面積用關于x的代數式表示出來,并令其值為180,求出方程的解即可;(3)令區域③的面積為S,得出x關于S的表達式,得到關于S的二次函數,求出二次函數在x取值范圍內的最大值即可.【詳解】(1)48-11x(1)根據題意,得5x(48-11x)=180,解得x1=1,x1=3答:x為1或3時,區域③的面積為180平方米(3)設區域③的面積為S,則S=5x(48-11x)=-60x1+140x=-60(x-1)1+140∵-60<0,∴當x=1時,S有最大值,最大值為140答:x為1時,區域③的面積最大,為140平方米【點睛】本題考查了二次函數的實際應用,解題的關鍵是正確理解題中的等量關系,正確得出區域面積的表達式.21、(1)①證明見解析,②存在,;(2)或.【分析】(1)①證明∠A+2∠ABD=90°即可解決問題.
②如圖1中,假設在AC邊設上存在點E(異于點D),使得△ABE是“類直角三角形”.證明△ABC∽△BEC,可得,由此構建方程即可解決問題.
(2)分兩種情形:①如圖2中,當∠ABC+2∠C=90°時,作點D關于直線AB的對稱點F,連接FA,FB.則點F在⊙O上,且∠DBF=∠DOA.
②如圖3中,由①可知,點C,A,F共線,當點E與D共線時,由對稱性可知,BA平分∠FBC,可證∠C+2∠ABC=90°,利用相似三角形的性質構建方程即可解決問題.【詳解】(1)①證明:如圖1中,∵是的角平分線,∴,∵,∴,∴,∴為“類直角三角形”.②如圖1中,假設在邊設上存在點(異于點),使得是“類直角三角形”.在中,∵,,∴,∵,∴,∵∴,∴,∴,∴,(2)∵是直徑,∴,∵,,∴,①如圖2中,當時,作點關于直線的對稱點,連接,.則點在上,且,∵,且,∴,∴,,共線,∵∴,∴,∴,即∴.②如圖3中,由①可知,點,,共線,當點與共線時,由對稱性可知,平分,∴,∵,,∴,∴,即,∴,且中解得綜上所述,當是“類直角三角形”時,的長為或.【點睛】本題考查了相似三角形的判定和性質,“類直角三角形”的定義等知識,解題的關鍵是理解題意,學會用分類討論的思想思考問題,學會利用參數構建方程解決問題,屬于中考壓軸題.22、(1)見解析;(2)【解析】(1)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果;(2)由(1)可求得恰好選派一男一女兩位同學參賽的有8種情況,然后利用概率公式求解即可求得答案.【詳解】(1)畫樹狀圖得:(2)∵恰好選派一男一女兩位同學參賽的有8種情況,∴恰好選派一男一女兩位同學參賽的概率為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.用到的知識點為:概率=所求情況數與總情況數之比.23、(1)或;(2)C點坐標為:(0,3),D(2,-1);(3)P(,0).【分析】(1)根據二次函數的圖象經過坐標原點O(0,0),直接代入求出m的值即可.(2)把m=2,代入求出二次函數解析式,利用配方法求出頂點坐標以及圖象與y軸交點即可.(3)根據兩點之間線段最短的性質,當P、C、D共線時PC+PD最短,利用相似三角形的判定和性質得出PO的長即可得出答案.【詳解】解:(1)∵二次函數的圖象經過坐標原點O(0,0),∴代入得:,解得:m=±1.∴二次函數的解析式為:或.(2)∵m=2,∴二次函數為:.∴拋物線的頂點為:D(2,-1).當x=0時,y=3,∴C點坐標為:(0,3).(3)存在,當P、C、D共線時PC+PD最短.過點D作DE⊥y軸于點E,∵PO∥DE,∴△COP∽△CED.∴,即,解得:∴PC+PD最短時,P點的坐標為:P(,0).24、(1)見解析,,;(2)見解析【分析】(1)利用網格特點和旋轉的性質,畫出點O,B對應點E,F,從而得到△AEF,然后寫出E、F的坐標;
(2)分別連接OE、OF,然后分別去OA、OE、OF的三等份點得到A1、E1、F1,從而得到△A1E1F1.【詳解】解:(1)如圖,為所作,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論