2023-2024學年福建三明市數學九上期末統考模擬試題含解析_第1頁
2023-2024學年福建三明市數學九上期末統考模擬試題含解析_第2頁
2023-2024學年福建三明市數學九上期末統考模擬試題含解析_第3頁
2023-2024學年福建三明市數學九上期末統考模擬試題含解析_第4頁
2023-2024學年福建三明市數學九上期末統考模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年福建三明市數學九上期末統考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.拋物線y=x2+bx+c(其中b,c是常數)過點A(2,6),且拋物線的對稱軸與線段y=0(1≤x≤3)有交點,則c的值不可能是()A.4 B.6 C.8 D.102.拋物線的部分圖象如圖所示,當時,x的取值范圍是()A.x>2或x<-3 B.-3<x<2C.x>2或x<-4 D.-4<x<23.某工廠一月份生產機器100臺,計劃二、三月份共生產機器240臺,設二、三月份的平均增長率為x,則根據題意列出方程是()A.100(1+x)2=240B.100(1+x)+100(1+x)2=240C.100+100(1+x)+100(1+x)2=240D.100(1﹣x)2=2404.邊長為2的正六邊形的面積為()A.6 B.6 C.6 D.5.若點(x1,y1),(x2,y2)都是反比例函數圖象上的點,并且y1<0<y2,則下列結論中正確的是()A.x1>x2 B.x1<x2 C.y隨x的增大而減小 D.兩點有可能在同一象限6.如圖,四邊形ABCD是⊙O的內接四邊形,若⊙O的半徑為4,且∠B=2∠D,連接AC,則線段AC的長為()A.4 B.4 C.6 D.87.如圖,AB是⊙O的直徑,BT是⊙O的切線,若∠ATB=45°,AB=2,則陰影部分的面積是(

)A.2 B.1 C.32-8.如圖,螺母的一個面的外沿可以看作是正六邊形,這個正六邊形ABCDEF的半徑是2cm,則這個正六邊形的周長是()A.12 B.6 C.36 D.129.如圖,將一個大平行四邊形在一角剪去一個小平行四邊形,如果用直尺畫一條直線將其剩余部分分割成面積相等的兩部分,這樣的不同的直線一共可以畫出()A.1條 B.2條 C.3條 D.4條10.如圖,在ABC中,點D為BC邊上的一點,且AD=AB=5,AD⊥AB于點A,過點D作DE⊥AD,DE交AC于點E,若DE=2,則ADC的面積為()A. B.4 C. D.11.一元二次方程的解是()A. B. C., D.,12.如圖,是圓內接四邊形的一條對角線,點關于的對稱點在邊上,連接.若,則的度數為()A.106° B.116° C.126° D.136°二、填空題(每題4分,共24分)13.從“線段,等邊三角形,圓,矩形,正六邊形”這五個圖形中任取一個,取到既是軸對稱圖形又是中心對稱圖形的概率是_____.14.點P(2,﹣1)關于原點的對稱點坐標為(﹣2,m),則m=_____.15.小英同時擲甲、乙兩枚質地均勻的小立方體(立方體的每個面上分別標有數字1,2,3,4,5,6).記甲立方體朝上一面上的數字為x,乙立方體朝上一面上的數字為y,這樣就確定點P的一個坐標(x,y),那么點P落在雙曲線y=上的概率為____.16.如圖,四邊形ABCD是菱形,⊙O經過點A、C、D,與BC相交于點E,連接AC、AE.若∠D=70°,則∠EAC的度數為____________.17.已知一次函數y1=x+m的圖象如圖所示,反比例函數y2=,當x>0時,y2隨x的增大而_____(填“增大”或“減小”).18.如圖,在平面直角坐標系中,點A的坐標為,反比例函數的圖象經過線段OA的中點B,則k=_____.三、解答題(共78分)19.(8分)已知四邊形ABCD的四個頂點都在⊙O上,對角線AC和BD交于點E.(1)若∠BAD和∠BCD的度數之比為1:2,求∠BCD的度數;(2)若AB=3,AD=5,∠BAD=60°,點C為劣弧BD的中點,求弦AC的長;(3)若⊙O的半徑為1,AC+BD=3,且AC⊥BD.求線段OE的取值范圍.20.(8分)如圖,點在上,,交于點,點為射線上一動點,平分,連接.(1)求證:;(2)連接,若,則當_______時,四邊形是矩形.21.(8分)2019年11月26日,魯南高鐵正式開通運營.魯南高鐵臨沂段修建過程中需要經過一座小山.如圖,施工方計劃沿AC方向挖隧道,為了加快施工速度,要在小山的另一側D(A、C、D共線)處同時施工.測得∠CAB=30°,,∠ABD=105°,求AD的長.22.(10分)已知,拋物線y=﹣x2+bx+c經過點A(﹣1,0)和C(0,3).(1)求拋物線的解析式;(2)在拋物線的對稱軸上,是否存在點P,使PA+PC的值最小?如果存在,請求出點P的坐標,如果不存在,請說明理由;(3)設點M在拋物線的對稱軸上,當△MAC是直角三角形時,求點M的坐標.23.(10分)解下列方程(1)2x(x﹣2)=1(2)2(x+3)2=x2﹣924.(10分)如圖,拋物線y=ax2+bx+6經過點A(﹣2,0),B(4,0)兩點,與y軸交于點C,點D是拋物線上一個動點,設點D的橫坐標為m(1<m<4)連接BC,DB,DC.(1)求拋物線的函數解析式;(2)△BCD的面積是否存在最大值,若存在,求此時點D的坐標;若不存在,說明理由;(3)在(2)的條件下,若點M是x軸上一動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,D,M,N為頂點的四邊形是平行四邊形.若存在,請直接寫出點M的坐標;若不存在,請說明理由.25.(12分)解方程:(1)2x2﹣7x+3=0(2)7x(5x+2)=6(5x+2)26.如圖,某市郊外景區內一條筆直的公路經過、兩個景點,景區管委會又開發了風景優美的景點.經測量,位于的北偏東的方向上,的北偏東的方向上,且.(1)求景點與的距離.(2)求景點與的距離.(結果保留根號)

參考答案一、選擇題(每題4分,共48分)1、A【解析】試題分析:根據拋物線y=x2+bx+c(其中b,c是常數)過點A(2,6),且拋物線的對稱軸與線段y=0(1≤x≤3)有交點,可以得到c的取值范圍,從而可以解答本題.∵拋物線y=x2+bx+c(其中b,c是常數)過點A(2,6),且拋物線的對稱軸與線段y=0(1≤x≤3)有交點,∴解得6≤c≤14考點:二次函數的性質2、C【分析】先根據對稱軸和拋物線與x軸的交點求出另一交點;再根據開口方向,結合圖形,求出y<0時,x的取值范圍.【詳解】解:因為拋物線過點(2,0),對稱軸是x=-1,

根據拋物線的對稱性可知,拋物線必過另一點(-1,0),

因為拋物線開口向下,y<0時,圖象在x軸的下方,

此時,x>2或x<-1.

故選:C.【點睛】本題考查了拋物線與x軸的交點,解題的關鍵是利用二次函數的對稱性,判斷圖象與x軸的交點,根據開口方向,形數結合,得出結論.3、B【分析】設二、三月份的平均增長率為x,則二月份的生產量為100×(1+x),三月份的生產量為100×(1+x)(1+x),根據二月份的生產量+三月份的生產量=1臺,列出方程即可.【詳解】設二、三月份的平均增長率為x,則二月份的生產量為100×(1+x),三月份的生產量為100×(1+x)(1+x),根據題意,得100(1+x)+100(1+x)2=1.故選B.【點睛】本題考查了由實際問題抽象出一元二次方程的知識,設出未知數,正確找出等量關系是解決問題的關鍵.4、A【解析】首先根據題意作出圖形,然后可得△OBC是等邊三角形,然后由三角函數的性質,求得OH的長,繼而求得正六邊形的面積.【詳解】解:如圖,連接OB,OC,過點O作OH⊥BC于H,∵六邊形ABCDEF是正六邊形,∴∠BOC=×360°=60°,∵OB=0C,∴△OBC是等邊三角形,∴BC=OB=OC=2,∴它的半徑為2,邊長為2;∵在Rt△OBH中,OH=OB?sin60°=2×,∴邊心距是:;∴S正六邊形ABCDEF=6S△OBC=6××2×=6.故選:A.【點睛】本題考查圓的內接正六邊形的性質、正多邊形的內角和、等邊三角形的判定與性質以及三角函數等知識.此題難度不大,注意掌握數形結合思想的應用.5、B【解析】根據函數的解析式得出反比例函數y的圖象在第二、四象限,求出點(x1,y1)在第四象限的圖象上,點(x1,y1)在第二象限的圖象上,再逐個判斷即可.【詳解】反比例函數y的圖象在第二、四象限.∵y1<0<y1,∴點(x1,y1)在第四象限的圖象上,點(x1,y1)在第二象限的圖象上,∴x1>0>x1.A.x1>x1,故本選項正確;B.x1<x1,故本選項錯誤;C.在每一個象限內,y隨x的增大而增大,故本選項錯誤;D.點(x1,y1)在第四象限的圖象上,點(x1,y1)在第二象限的圖象上,故本選項錯誤.故選A.【點睛】本題考查了反比例函數的圖象和性質的應用,能熟記反比例函數的性質是解答此題的關鍵.6、B【分析】連接OA,OC,利用內接四邊形的性質得出∠D=60°,進而得出∠AOC=120°,利用含30°的直角三角形的性質解答即可.【詳解】連接OA,OC,過O作OE⊥AC,∵四邊形ABCD是⊙O的內接四邊形,∠B=2∠D,∴∠B+∠D=3∠D=180°,解得:∠D=60°,∴∠AOC=120°,在Rt△AEO中,OA=4,∴AE=2,∴AC=4,故選:B.【點睛】此題考查內接四邊形的性質,關鍵是利用內接四邊形的性質得出∠D=60°.7、B【分析】設AT交⊙O于點D,連結BD,根據圓周角定理可得∠ADB=90°,再由切線性質結合已知條件得△BDT和△ABD都為等腰直角三角形,由S陰=S△BDT計算即可得出答案.【詳解】設AT交⊙O于點D,連結BD,如圖:∵AB是⊙O的直徑,∴∠ADB=90°,又∵∠ATB=45°,BT是⊙O切線,∴△BDT和△ABD都為等腰直角三角形,∵AB=2,∴AD=BD=TD=22AB=2∴弓形AD的面積等于弓形BD的面積,∴S陰=S△BDT=12×2×2故答案為B.【點睛】本題考查了切線的性質,圓周角定理,等腰直角三角形的判定,解決本題的關鍵是利用等腰直角三角形的性質把陰影部分的面積轉化為三角形的面積.8、D【分析】由正六邊形的性質證出△AOB是等邊三角形,由等邊三角形的性質得出AB=OA,即可得出答案【詳解】設正六邊形的中心為O,連接AO,BO,如圖所示:∵O是正六邊形ABCDEF的中心,∴AB=BC=CD=DE=EF=FA,∠AOB=60°,AO=BO=2cm,∴△AOB是等邊三角形,∴AB=OA=2cm,∴正六邊形ABCDEF的周長=6AB=12cm.故選D【點睛】此題主要考查了正多邊形和圓、等邊三角形的判定與性質;根據題意得出△AOB是等邊三角形是解題關鍵.9、C【分析】利用平行四邊形的性質分割平行四邊形即可.【詳解】解:如圖所示,這樣的不同的直線一共可以畫出三條,故答案為:1.【點睛】本題考查平行四邊形的性質,解題的關鍵是掌握平行四邊形的中心對稱性.10、D【分析】根據題意得出AB∥DE,得△CED∽△CAB,利用對應邊成比例求CD長度,再根據等腰直角三角形求出底邊上的高,利用面積公式計算即可.【詳解】解:如圖,過A作AF⊥BC,垂足為F,∵AD⊥AB,∴∠BAD=90°在Rt△ABD中,由勾股定理得,BD=,∵AF⊥BD,∴AF=.∵AD⊥AB,DE⊥AD,∴∠BAD=∠ADE=90°,∴AB∥DE,∴∠CDE=∠B,∠CED=∠CAB,∴△CDE∽△CBA,∴,∴,∴CD=,∴S△ADC=.故選:D【點睛】本題考查相似三角形的性質與判定及等腰直角三角形的性質,利用相似三角形的對應邊成比例求線段長是解答此題的關鍵.11、C【解析】用因式分解法解一元二次方程即可.【詳解】∴或∴,故選C.【點睛】本題主要考查一元二次方程的解,掌握解一元二次方程的方法是解題的關鍵.12、B【解析】根據圓的內接四邊形對角互補,得出∠D的度數,再由軸對稱的性質得出∠AEC的度數即可.【詳解】解:∵四邊形ABCD是圓的內接四邊形,∴∠D=180°-∠ABC=180°-64°=116°,∵點D關于的對稱點在邊上,∴∠D=∠AEC=116°,故答案為B.【點睛】本題考查了圓的內接四邊形的性質及軸對稱的性質,解題的關鍵是熟知圓的內接四邊形對角互補及軸對稱性質.二、填空題(每題4分,共24分)13、.【詳解】試題分析:在線段、等邊三角形、圓、矩形、正六邊形這五個圖形中,既是中心對稱圖形又是軸對稱圖形的有線段、圓、矩形、正六邊形,共4個,所以取到的圖形既是中心對稱圖形又是軸對稱圖形的概率為.【點睛】本題考查概率公式,掌握圖形特點是解題關鍵,難度不大.14、1【分析】直接利用關于原點對稱點的性質得出答案.【詳解】∵點P(2,﹣1)關于原點的對稱點坐標為(﹣2,m),∴m=1.故答案為:1.【點睛】此題主要考查了關于原點對稱點的性質,正確把握對應點橫縱坐標的關系是解題關鍵.15、【分析】列表得出所有等可能的情況數,找出P坐標落在雙曲線上的情況數,即可求出所求的概率.【詳解】解:列表得:所有等可能的情況數有36種,其中P(x,y)落在雙曲線y=上的情況有4種,則P==.故答案為【點睛】本題考查列表法與樹狀圖法;反比例函數圖象上點的坐標特征,掌握概率的求法是解題關鍵.16、【分析】根據菱形的性質求∠ACD的度數,根據圓內接四邊形的性質求∠AEC的度數,由三角形的內角和求解.【詳解】解:∵四邊形ABCD是菱形,∴AD∥BC,AD=DC,∴∠DAC=∠ACB,∠DAC=∠DCA∵∠D=70°,∴∠DAC=,∴∠ACB=55°,∵四邊形ABCD是⊙O的內接四邊形,∴∠AEC+∠D=180°,∴∠AEC=180°-70°=110°,∴∠EAC=180°-∠AEC-∠ACB=180°-55°-110°=15°,∴∠EAC=15°.故答案為:15°【點睛】本題考查了菱形的性質,三角形的內角和,圓內接四邊形的性質,熟練掌握菱形的性質和圓的性質是解答此題的關鍵.17、減小.【分析】根據一次函數圖象與y軸交點可得m<2,進而可得2-m>0,再根據反比例函數圖象的性質可得答案.【詳解】根據一次函數y1=x+m的圖象可得m<2,∴2﹣m>0,∴反比例函數y2=的圖象在一,三象限,當x>0時,y2隨x的增大而減小,故答案為:減小.【點睛】此題主要考查了反比例函數的性質,以及一次函數的性質,關鍵是正確判斷出m的取值范圍.18、-2【解析】由A,B是OA的中點,點B的坐標,把B的坐標代入關系式可求k的值.【詳解】∵A(-4,2),O(0,0),B是OA的中點,∴點B(-2,1),代入得:∴故答案為:-2【點睛】本題考查反比例函數圖象上點的坐標特征及線段中點坐標公式;根據中點坐標公式求出點B坐標,代入求k的值是本題的基本方法.三、解答題(共78分)19、(1)120°;(2);(3)≤OE≤【分析】(1)利用圓內接四邊形對角互補構建方程解決問題即可.(2)將△ACD繞點C逆時針旋轉120°得△CBE,根據旋轉的性質得出∠E=∠CAD=30°,BE=AD=5,AC=CE,求出A、B、E三點共線,解直角三角形求出即可;(3)由題知AC⊥BD,過點O作OM⊥AC于M,ON⊥BD于N,連接OA,OD,判斷出四邊形OMEN是矩形,進而得出OE2=2﹣(AC2+BD2),設AC=m,構建二次函數,利用二次函數的性質解決問題即可.【詳解】解:(1)如圖1中,∵四邊形ABCD是⊙O的內接四邊形,∴∠A+∠C=180°,∵∠A:∠C=1:2,∴設∠A=x,∠C=2x,則x+2x=180°,解得,x=60°,∴∠C=2x=120°.(2)如圖2中,∵A、B、C、D四點共圓,∠BAD=60°,∴∠BCD=180°﹣60°=120°,∵點C為弧BD的中點,∴BC=CD,∠CAD=∠CAB=∠BAD=30°,將△ACD繞點C逆時針旋轉120°得△CBE,如圖2所示:則∠E=∠CAD=∠CAB=30°,BE=AD=5,AC=CE,∴∠ABC+∠EBC=(180°﹣∠CAB﹣∠ACB)+(180°﹣∠E﹣∠BCE)=360°﹣(∠CAB+∠ACB+∠ABC)=360°﹣180°=180°,∴A、B、E三點共線,過C作CM⊥AE于M,∵AC=CE,∴AM=EM=AE=(AB+AD)=×(3+5)=4,在Rt△AMC中,AC=.(3)過點O作OM⊥AC于M,ON⊥BD于N,連接OA,OD,∵OA=OD=1,OM2=OA2﹣AM2,ON2=OD2﹣DN2,AM=AC,DN=BD,AC⊥BD,∴四邊形OMEN是矩形,∴ON=ME,OE2=OM2+ME2,∴OE2=OM2+ON2=2﹣(AC2+BD2)設AC=m,則BD=3﹣m,∵⊙O的半徑為1,AC+BD=3,∴1≤m≤2,OE2=2﹣[(AC+BD)2﹣2AC×BD]=﹣m2+m﹣=﹣(m﹣)2+,∴≤OE2≤,∴≤OE≤.【點睛】本題主要考查的是圓和四邊形的綜合應用,掌握圓和四邊形的基本性質結合題目條件分析題目隱藏條件是解題的關鍵.20、(1)見詳解;(2)1【分析】(1)先證,再證,可得,即可得出結論;

(2)根據矩形的性質可得∠BCA=90°,再證△ABC≌△ADC,即可解決問題.【詳解】(1)證明:∵平分∴∵∴∵∴∴∴(2)當1時,四邊形是矩形.當四邊形是矩形,∴∠BCA=90°,

又∵平分,

∴∠BAC=∠DAC∴△ABC≌△ADC,

∴BC=DC又∵

∴DC=1

故答案為1.【點睛】本題考查矩形判定和性質、全等三角形的判定和性質等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.21、2()km【分析】作BE⊥AD于點E,根據∠CAB=30°,∠ABD=105°,可以求得∠ABE和∠DBE的度數以及BE、DE的長,進而求得AE的長,然后可求得AD的長.【詳解】作BE⊥AD于點E,∵∠CAB=30°,∴∠ABE=60°,∵∠ABD=105°,∴∠EBD=45°,∴∠EDB=45°,∵,∴BE=DE=2km,∴AE=,∴AD=AE+DE=+2=2()km【點睛】本題考查解直角三角形的應用,解答本題的關鍵是明確題意,利用數形結合的思想解答.22、(1);(2)當的值最小時,點P的坐標為;(3)點M的坐標為、、或.【解析】由點A、C的坐標,利用待定系數法即可求出拋物線的解析式;連接BC交拋物線對稱軸于點P,此時取最小值,利用二次函數圖象上點的坐標特征可求出點B的坐標,由點B、C的坐標利用待定系數法即可求出直線BC的解析式,利用配方法可求出拋物線的對稱軸,再利用一次函數圖象上點的坐標特征即可求出點P的坐標;設點M的坐標為,則,,,分、和三種情況,利用勾股定理可得出關于m的一元二次方程或一元一次方程,解之可得出m的值,進而即可得出點M的坐標.【詳解】解:將、代入中,得:,解得:,拋物線的解析式為.連接BC交拋物線對稱軸于點P,此時取最小值,如圖1所示.當時,有,解得:,,點B的坐標為.拋物線的解析式為,拋物線的對稱軸為直線.設直線BC的解析式為,將、代入中,得:,解得:,直線BC的解析式為.當時,,當的值最小時,點P的坐標為.設點M的坐標為,則,,.分三種情況考慮:當時,有,即,解得:,,點M的坐標為或;當時,有,即,解得:,點M的坐標為;當時,有,即,解得:,點M的坐標為綜上所述:當是直角三角形時,點M的坐標為、、或【點睛】本題考查待定系數法求二次一次函數解析式、二次一次函數圖象的點的坐標特征、軸對稱中的最短路徑問題以及勾股定理,解題的關鍵是:由點的坐標,利用待定系數法求出拋物線解析式;由兩點之間線段最短結合拋物線的對稱性找出點P的位置;分、和三種情況,列出關于m的方程.23、(1)x1=,x2=;(2)x1=﹣3,x2=﹣1【分析】(1)整理成一般式,再利用公式法求解可得;

(2)利用因式分解法求解可得.【詳解】(1)整理,得2x2﹣4x﹣1=0,∵△=(﹣4)2﹣4×2×(﹣1)=24>0,∴x==,得x1=,x2=,(2)整理,得2(x+3)2﹣(x+3)(x﹣3)=0,得(x+3)[2(x+3)﹣(x﹣3)]=0,∴x+3=0或2(x+3)﹣(x﹣3)=0,∴x1=﹣3,x2=﹣1.【點睛】本題主要考查解一元二次方程的能力,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結合方程的特點選擇合適、簡便的方法是解題的關鍵.24、(1);(2)存在,D的坐標為(2,6);(3)存在這樣的點M,使得以點B,D,M,N為頂點的四邊形是平行四邊形,點M的坐標為:(2,0)或(6,0)或(,0)或(,0).【分析】(1)根據點,利用待定系數法求解即可;(2)先根據函數解析式求出點C、D坐標,再將過點D作y軸的平行線交BC于點E,利用待定系數法求出直線BC的函數解析式,從而得出點E坐標,然后根據得出的面積表達式,最后利用二次函數的性質求出的面積取最大值時m的值,從而可得點D坐標;(3)根據平行四邊形的定義分兩種情況:BD為平行四邊形的邊和BD為平行四邊形的對角線,然后先分別根據平行四邊形的性質求出點N坐標,從而即可求出點M坐標.【詳解】(1)∵拋物線經過點∴解得故拋物線的解析式為;(2)的面積存在最大值.求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論