廣東佛山順德區2024屆聯盟測試數學試題_第1頁
廣東佛山順德區2024屆聯盟測試數學試題_第2頁
廣東佛山順德區2024屆聯盟測試數學試題_第3頁
廣東佛山順德區2024屆聯盟測試數學試題_第4頁
廣東佛山順德區2024屆聯盟測試數學試題_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東佛山順德區2024屆聯盟“測試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數是偶函數,當時,函數單調遞減,設,,,則的大小關系為()A. B. C. D.2.已知隨機變量滿足,,.若,則()A., B.,C., D.,3.若直線經過拋物線的焦點,則()A. B. C.2 D.4.下列不等式正確的是()A. B.C. D.5.已知函數的圖像的一條對稱軸為直線,且,則的最小值為()A. B.0 C. D.6.()A. B. C.1 D.7.點在曲線上,過作軸垂線,設與曲線交于點,,且點的縱坐標始終為0,則稱點為曲線上的“水平黃金點”,則曲線上的“水平黃金點”的個數為()A.0 B.1 C.2 D.38.已知是邊長為1的等邊三角形,點,分別是邊,的中點,連接并延長到點,使得,則的值為()A. B. C. D.9.設復數滿足,則()A. B. C. D.10.已知斜率為k的直線l與拋物線交于A,B兩點,線段AB的中點為,則斜率k的取值范圍是()A. B. C. D.11.《九章算術》“少廣”算法中有這樣一個數的序列:列出“全步”(整數部分)及諸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去約其分子,將所得能通分之分數進行通分約簡,又用最下面的分母去遍乘諸(未通者)分子和以通之數,逐個照此同樣方法,直至全部為整數,例如:及時,如圖:記為每個序列中最后一列數之和,則為()A.147 B.294 C.882 D.176412.已知邊長為4的菱形,,為的中點,為平面內一點,若,則()A.16 B.14 C.12 D.8二、填空題:本題共4小題,每小題5分,共20分。13.在直角坐標系中,直線的參數方程為(為參數),曲線的參數方程為(為參數).(1)求直線和曲線的普通方程;(2)設為曲線上的動點,求點到直線距離的最小值及此時點的坐標.14.設,分別是定義在上的奇函數和偶函數,且,則_________15.如果函數(,且,)在區間上單調遞減,那么的最大值為__________.16.已知是同一球面上的四個點,其中平面,是正三角形,,則該球的表面積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,其中,為自然對數的底數.(1)當時,求函數的極值;(2)設函數的導函數為,求證:函數有且僅有一個零點.18.(12分)已知矩陣的逆矩陣.若曲線:在矩陣A對應的變換作用下得到另一曲線,求曲線的方程.19.(12分)已知矩陣,,若矩陣,求矩陣的逆矩陣.20.(12分)甲、乙兩班各派三名同學參加知識競賽,每人回答一個問題,答對得10分,答錯得0分,假設甲班三名同學答對的概率都是,乙班三名同學答對的概率分別是,,,且這六名同學答題正確與否相互之間沒有影響.(1)記“甲、乙兩班總得分之和是60分”為事件,求事件發生的概率;(2)用表示甲班總得分,求隨機變量的概率分布和數學期望.21.(12分)已知函數,直線為曲線的切線(為自然對數的底數).(1)求實數的值;(2)用表示中的最小值,設函數,若函數為增函數,求實數的取值范圍.22.(10分)已知離心率為的橢圓經過點.(1)求橢圓的方程;(2)薦橢圓的右焦點為,過點的直線與橢圓分別交于,若直線、、的斜率成等差數列,請問的面積是否為定值?若是,求出此定值;若不是,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】

根據圖象關于軸對稱可知關于對稱,從而得到在上單調遞增且;再根據自變量的大小關系得到函數值的大小關系.【題目詳解】為偶函數圖象關于軸對稱圖象關于對稱時,單調遞減時,單調遞增又且,即本題正確選項:【題目點撥】本題考查利用函數奇偶性、對稱性和單調性比較函數值的大小關系問題,關鍵是能夠通過奇偶性和對稱性得到函數的單調性,通過自變量的大小關系求得結果.2、B【解題分析】

根據二項分布的性質可得:,再根據和二次函數的性質求解.【題目詳解】因為隨機變量滿足,,.所以服從二項分布,由二項分布的性質可得:,因為,所以,由二次函數的性質可得:,在上單調遞減,所以.故選:B【題目點撥】本題主要考查二項分布的性質及二次函數的性質的應用,還考查了理解辨析的能力,屬于中檔題.3、B【解題分析】

計算拋物線的交點為,代入計算得到答案.【題目詳解】可化為,焦點坐標為,故.故選:.【題目點撥】本題考查了拋物線的焦點,屬于簡單題.4、D【解題分析】

根據,利用排除法,即可求解.【題目詳解】由,可排除A、B、C選項,又由,所以.故選D.【題目點撥】本題主要考查了三角函數的圖象與性質,以及對數的比較大小問題,其中解答熟記三角函數與對數函數的性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.5、D【解題分析】

運用輔助角公式,化簡函數的解析式,由對稱軸的方程,求得的值,得出函數的解析式,集合正弦函數的最值,即可求解,得到答案.【題目詳解】由題意,函數為輔助角,由于函數的對稱軸的方程為,且,即,解得,所以,又由,所以函數必須取得最大值和最小值,所以可設,,所以,當時,的最小值,故選D.【題目點撥】本題主要考查了正弦函數的圖象與性質,其中解答中利用三角恒等變換的公式,化簡函數的解析式,合理利用正弦函數的對稱性與最值是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.6、A【解題分析】

利用復數的乘方和除法法則將復數化為一般形式,結合復數的模長公式可求得結果.【題目詳解】,,因此,.故選:A.【題目點撥】本題考查復數模長的計算,同時也考查了復數的乘方和除法法則的應用,考查計算能力,屬于基礎題.7、C【解題分析】

設,則,則,即可得,設,利用導函數判斷的零點的個數,即為所求.【題目詳解】設,則,所以,依題意可得,設,則,當時,,則單調遞減;當時,,則單調遞增,所以,且,有兩個不同的解,所以曲線上的“水平黃金點”的個數為2.故選:C【題目點撥】本題考查利用導函數處理零點問題,考查向量的坐標運算,考查零點存在性定理的應用.8、D【解題分析】

設,,作為一個基底,表示向量,,,然后再用數量積公式求解.【題目詳解】設,,所以,,,所以.故選:D【題目點撥】本題主要考查平面向量的基本運算,還考查了運算求解的能力,屬于基礎題.9、D【解題分析】

根據復數運算,即可容易求得結果.【題目詳解】.故選:D.【題目點撥】本題考查復數的四則運算,屬基礎題.10、C【解題分析】

設,,,,設直線的方程為:,與拋物線方程聯立,由△得,利用韋達定理結合已知條件得,,代入上式即可求出的取值范圍.【題目詳解】設直線的方程為:,,,,,聯立方程,消去得:,△,,且,,,線段的中點為,,,,,,,,把代入,得,,,故選:【題目點撥】本題主要考查了直線與拋物線的位置關系,考查了韋達定理的應用,屬于中檔題.11、A【解題分析】

根據題目所給的步驟進行計算,由此求得的值.【題目詳解】依題意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故選:A【題目點撥】本小題主要考查合情推理,考查中國古代數學文化,屬于基礎題.12、B【解題分析】

取中點,可確定;根據平面向量線性運算和數量積的運算法則可求得,利用可求得結果.【題目詳解】取中點,連接,,,即.,,,則.故選:.【題目點撥】本題考查平面向量數量積的求解問題,涉及到平面向量的線性運算,關鍵是能夠將所求向量進行拆解,進而利用平面向量數量積的運算性質進行求解.二、填空題:本題共4小題,每小題5分,共20分。13、(1),;(2),.【解題分析】

(1)利用代入消參的方法即可將兩個參數方程轉化為普通方程;(2)利用參數方程,結合點到直線的距離公式,將問題轉化為求解二次函數最值的問題,即可求得.【題目詳解】(1)直線的普通方程為.在曲線的參數方程中,,所以曲線的普通方程為.(2)設點.點到直線的距離.當時,,所以點到直線的距離的最小值為.此時點的坐標為.【題目點撥】本題考查將參數方程轉化為普通方程,以及利用參數方程求距離的最值問題,屬中檔題.14、1【解題分析】

令,結合函數的奇偶性,求得,即可求解的值,得到答案.【題目詳解】由題意,函數分別是上的奇函數和偶函數,且,令,可得,所以.故答案為:1.【題目點撥】本題主要考查了函數奇偶性的應用,其中解答中熟記函數的奇偶性,合理賦值求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.15、18【解題分析】

根據函數單調性的性質,分一次函數和一元二次函數的對稱性和單調區間的關系建立不等式,利用基本不等式求解即可.【題目詳解】解:①當時,,在區間上單調遞減,則,即,則.②當時,,函數開口向上,對稱軸為,因為在區間上單調遞減,則,因為,則,整理得,又因為,則.所以即,所以當且僅當時等號成立.綜上所述,的最大值為18.故答案為:18【題目點撥】本題主要考查一次函數與二次函數的單調性和均值不等式.利用均值不等式求解要注意”一定,二正,三相等”.16、【解題分析】

求得等邊三角形的外接圓半徑,利用勾股定理求得三棱錐外接球的半徑,進而求得外接球的表面積.【題目詳解】設是等邊三角形的外心,則球心在其正上方處.設,由正弦定理得.所以得三棱錐外接球的半徑,所以外接球的表面積為.故答案為:【題目點撥】本小題主要考查幾何體外接球表面積的計算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、見解析【解題分析】

(1)當時,函數,其定義域為,則,設,,易知函數在上單調遞增,且,所以當時,,即;當時,,即,所以函數在上單調遞減,在上單調遞增,所以函數在處取得極小值,為,無極大值.(2)由題可得函數的定義域為,,設,,顯然函數在上單調遞增,當時,,,所以函數在內有一個零點,所以函數有且僅有一個零點;當時,,,所以函數有且僅有一個零點,所以函數有且僅有一個零點;當時,,,因為,所以,,又,所以函數在內有一個零點,所以函數有且僅有一個零點.綜上,函數有且僅有一個零點.18、【解題分析】

根據,可解得,設為曲線任一點,在矩陣對應的變換作用下得到點,則點在曲線上,根據變換的定義寫出相應的矩陣等式,再用表示出,代入曲線的方程中,即得.【題目詳解】,,即.,解得,.設為曲線任一點,則,又設在矩陣A變換作用得到點,則,即,所以即代入,得,所以曲線的方程為.【題目點撥】本題考查逆矩陣,矩陣與變換等,是基礎題.19、.【解題分析】試題分析:,所以.試題解析:B.因為,所以.20、(1)(2)分布列見解析,期望為20【解題分析】

利用相互獨立事件概率公式求解即可;由題意知,隨機變量可能的取值為0,10,20,30,分別求出對應的概率,列出分布列并代入數學期望公式求解即可.【題目詳解】(1)由相互獨立事件概率公式可得,(2)由題意知,隨機變量可能的取值為0,10,20,30.,,,,所以,的概率分布列為0102030所以數學期望.【題目點撥】本題考查相互獨立事件概率公式和離散型隨機變量的分布列及其數學期望;考查運算求解能力;確定隨機變量可能的取值,求出對應的概率是求解本題的關鍵;屬于中檔題、??碱}型.21、(1);(2).【解題分析】

試題分析:(1)先求導,然后利用導數等于求出切點的橫坐標,代入兩個曲線的方程,解方程組,可求得;(2)設與交點的橫坐標為,利用導數求得,從而,然后利用求得的取值范圍為.試題解析:(1)對求導得.設直線與曲線切于點,則,解得,所以的值為1.(2)記函數,下面考察函數的符號,對函數求導得.當時,恒成立.當時,,從而.∴在上恒成立,故在上單調遞減.,∴,又曲線在上連續不間斷,所以由函數的零點存在性定理及其單調性知唯一的,使.∴;,,∴,從而,∴,由函數為增函數,且曲線在上連續不斷知在,上恒成立.①當時,在上恒成立,即在上恒成立,記,則,當變化時,變化情況列表如下:

3

0

極小值

∴,故“在上恒成立”只需,即.②當時,,當時,在上恒成立,綜合①②知,當時,函數為增函數.故實數的取值范圍是考點:函數導數與不等式.【方法點晴】函數導數問題中,和切線有關的題目非常多,我們只要把握住關鍵點:一個是切點,一個是斜率,切點即在原來函數圖象上,也在切線上;斜率就是導數的值.根據這兩點,列方程組,就能解決.本題第二問我們采用分層推進的策略,先求得的表達式,然后再求得的表達式,我們就可以利用導數這個工具來求的取值范圍了.22、(1);(2)是,【解題分析】

(1)根據及可得,再將點代入橢圓的方程與聯立解出,即可求出橢圓的方程;(2)可設所在直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論