




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024學年山東省濟寧市曲阜市重點達標名校中考聯考數學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列計算正確的是A.a2·a2=2a4B.(-a2)3=-a6C.3a2-6a2=3a2D.(a-2)2=a2-42.如圖,在平面直角坐標系xOy中,菱形AOBC的一個頂點O在坐標原點,一邊OB在x軸的正半軸上,sin∠AOB=,反比例函數y=在第一象限內的圖象經過點A,與BC交于點F,則△AOF的面積等于()A.30 B.40 C.60 D.803.對于命題“如果∠1+∠1=90°,那么∠1≠∠1.”能說明它是假命題的是()A.∠1=50°,∠1=40° B.∠1=40°,∠1=50°C.∠1=30°,∠1=60° D.∠1=∠1=45°4.如圖,△ABC中,AB=4,AC=3,BC=2,將△ABC繞點A順時針旋轉60°得到△AED,則BE的長為()A.5 B.4 C.3 D.25.不等式組中兩個不等式的解集,在數軸上表示正確的是A. B.C. D.6.如圖,直線a∥b,一塊含60°角的直角三角板ABC(∠A=60°)按如圖所示放置.若∠1=55°,則∠2的度數為()A.105° B.110° C.115° D.120°7.如圖,PA切⊙O于點A,PO交⊙O于點B,點C是⊙O優弧弧AB上一點,連接AC、BC,如果∠P=∠C,⊙O的半徑為1,則劣弧弧AB的長為()A.π B.π C.π D.π8.若α,β是一元二次方程3x2+2x-9=0的兩根,則的值是(
).A. B.- C.- D.9.“一般的,如果二次函數y=ax2+bx+c的圖象與x軸有兩個公共點,那么一元二次方程ax2+bx+c=0有兩個不相等的實數根.——蘇科版《數學》九年級(下冊)P21”參考上述教材中的話,判斷方程x2﹣2x=﹣2實數根的情況是()A.有三個實數根 B.有兩個實數根 C.有一個實數根 D.無實數根10.如圖,一把矩形直尺沿直線斷開并錯位,點E、D、B、F在同一條直線上,若∠ADE=125°,則∠DBC的度數為()A.125° B.75° C.65° D.55°二、填空題(共7小題,每小題3分,滿分21分)11.當﹣4≤x≤2時,函數y=﹣(x+3)2+2的取值范圍為_____________.12.如圖,△ABC中,D、E分別在AB、AC上,DE∥BC,AD:AB=1:3,則△ADE與△ABC的面積之比為______.13.從﹣2,﹣1,1,2四個數中,隨機抽取兩個數相乘,積為大于﹣4小于2的概率是_____.14.把兩個同樣大小的含45°角的三角尺按如圖所示的方式放置,其中一個三角尺的銳角頂點與另一個的直角頂點重合于點A,且另三個銳角頂點B,C,D在同一直線上.若AB=,則CD=_____.15.如圖,每個小正方形邊長為1,則△ABC邊AC上的高BD的長為_____.16.兩個反比例函數y=kx和y=1x在第一象限內的圖象如圖所示,點P在y=kx的圖象上,PC⊥x軸于點C,交17.已知一組數據4,x,5,y,7,9的平均數為6,眾數為5,則這組數據的中位數是_____.三、解答題(共7小題,滿分69分)18.(10分)計算:(﹣1)2018﹣2+|1﹣|+3tan30°.19.(5分)某商品的進價為每件50元.當售價為每件70元時,每星期可賣出300件,現需降價處理,且經市場調查:每降價1元,每星期可多賣出20件.在確保盈利的前提下,解答下列問題:(1)若設每件降價x元、每星期售出商品的利潤為y元,請寫出y與x的函數關系式,并求出自變量x的取值范圍;(2)當降價多少元時,每星期的利潤最大?最大利潤是多少?20.(8分)如圖,直線y=kx+2與x軸,y軸分別交于點A(﹣1,0)和點B,與反比例函數y=的圖象在第一象限內交于點C(1,n).求一次函數y=kx+2與反比例函數y=的表達式;過x軸上的點D(a,0)作平行于y軸的直線l(a>1),分別與直線y=kx+2和雙曲線y=交于P、Q兩點,且PQ=2QD,求點D的坐標.21.(10分)二次函數y=x2﹣2mx+5m的圖象經過點(1,﹣2).(1)求二次函數圖象的對稱軸;(2)當﹣4≤x≤1時,求y的取值范圍.22.(10分)如圖,已知點A(1,a)是反比例函數y1=的圖象上一點,直線y2=﹣與反比例函數y1=的圖象的交點為點B、D,且B(3,﹣1),求:(Ⅰ)求反比例函數的解析式;(Ⅱ)求點D坐標,并直接寫出y1>y2時x的取值范圍;(Ⅲ)動點P(x,0)在x軸的正半軸上運動,當線段PA與線段PB之差達到最大時,求點P的坐標.23.(12分)風電已成為我國繼煤電、水電之后的第三大電源,風電機組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進43米到達山底G處,在山頂B處發現正好一葉片到達最高位置,此時測得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數據:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)24.(14分)解方程:(1)x2﹣7x﹣18=0(2)3x(x﹣1)=2﹣2x
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】【分析】根據同底數冪乘法、冪的乘方、合并同類項法則、完全平方公式逐項進行計算即可得.【題目詳解】A.a2·a2=a4,故A選項錯誤;B.(-a2)3=-a6,正確;C.3a2-6a2=-3a2,故C選項錯誤;D.(a-2)2=a2-4a+4,故D選項錯誤,故選B.【題目點撥】本題考查了同底數冪的乘法、冪的乘方、合并同類項、完全平方公式,熟練掌握各運算的運算法則是解題的關鍵.2、B【解題分析】
過點A作AM⊥x軸于點M,設OA=a,通過解直角三角形找出點A的坐標,結合反比例函數圖象上點的坐標特征即可求出a的值,再根據四邊形OACB是菱形、點F在邊BC上,即可得出S△AOF=S菱形OBCA,結合菱形的面積公式即可得出結論.【題目詳解】過點A作AM⊥x軸于點M,如圖所示.設OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA?sin∠AOB=a,OM==a,∴點A的坐標為(a,a).∵點A在反比例函數y=的圖象上,∴a?a=a2=48,解得:a=1,或a=-1(舍去).∴AM=8,OM=6,OB=OA=1.∵四邊形OACB是菱形,點F在邊BC上,∴S△AOF=S菱形OBCA=OB?AM=2.故選B.【題目點撥】本題考查了菱形的性質、解直角三角形以及反比例函數圖象上點的坐標特征,解題的關鍵是找出S△AOF=S菱形OBCA.3、D【解題分析】
能說明是假命題的反例就是能滿足已知條件,但不滿足結論的例子.【題目詳解】“如果∠1+∠1=90°,那么∠1≠∠1.”能說明它是假命題為∠1=∠1=45°.故選:D.【題目點撥】考查了命題與定理的知識,理解能說明它是假命題的反例的含義是解決本題的關鍵.4、B【解題分析】
根據旋轉的性質可得AB=AE,∠BAE=60°,然后判斷出△AEB是等邊三角形,再根據等邊三角形的三條邊都相等可得BE=AB.【題目詳解】解:∵△ABC繞點A順時針旋轉
60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等邊三角形,∴BE=AB,∵AB=1,∴BE=1.故選B.【題目點撥】本題考查了旋轉的性質,等邊三角形的判定與性質,主要利用了旋轉前后對應邊相等以及旋轉角的定義.5、B【解題分析】由①得,x<3,由②得,x≥1,所以不等式組的解集為:1≤x<3,在數軸上表示為:,故選B.6、C【解題分析】
如圖,首先證明∠AMO=∠2,然后運用對頂角的性質求出∠ANM=55°;借助三角形外角的性質求出∠AMO即可解決問題.【題目詳解】如圖,對圖形進行點標注.∵直線a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故選C.【題目點撥】本題考查了平行線的性質,三角形外角的性質,熟練掌握和靈活運用相關知識是解題的關鍵.7、A【解題分析】
利用切線的性質得∠OAP=90°,再利用圓周角定理得到∠C=∠O,加上∠P=∠C可計算寫出∠O=60°,然后根據弧長公式計算劣弧的長.【題目詳解】解:∵PA切⊙O于點A,∴OA⊥PA,∴∠OAP=90°,∵∠C=∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的長=.故選:A.【題目點撥】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.也考查了圓周角定理和弧長公式.8、C【解題分析】分析:根據根與系數的關系可得出α+β=-、αβ=-3,將其代入=中即可求出結論.詳解:∵α、β是一元二次方程3x2+2x-9=0的兩根,∴α+β=-,αβ=-3,∴===.故選C.點睛:本題考查了根與系數的關系,牢記兩根之和等于-、兩根之積等于是解題的關鍵.9、C【解題分析】試題分析:由得,,即是判斷函數與函數的圖象的交點情況.因為函數與函數的圖象只有一個交點所以方程只有一個實數根故選C.考點:函數的圖象點評:函數的圖象問題是初中數學的重點和難點,是中考常見題,在壓軸題中比較常見,要特別注意.10、D【解題分析】
延長CB,根據平行線的性質求得∠1的度數,則∠DBC即可求得.【題目詳解】延長CB,延長CB,∵AD∥CB,∴∠1=∠ADE=145°,∴∠DBC=180°?∠1=180°?125°=55°.故答案選:D.【題目點撥】本題考查的知識點是平行線的性質,解題的關鍵是熟練的掌握平行線的性質.二、填空題(共7小題,每小題3分,滿分21分)11、-23≤y≤2【解題分析】
先根據a=-1判斷出拋物線的開口向下,故有最大值,可知對稱軸x=-3,再根據-4≤x≤2,可知當x=-3時y最大,把x=2時y最小代入即可得出結論.【題目詳解】解:∵a=-1,
∴拋物線的開口向下,故有最大值,
∵對稱軸x=-3,
∴當x=-3時y最大為2,
當x=2時y最小為-23,
∴函數y的取值范圍為-23≤y≤2,故答案為:-23≤y≤2.【題目點撥】本題考查二次函數的性質,掌握拋物線的開口方向、對稱軸以及增減性是解題關鍵.12、1:1.【解題分析】試題分析:由DE∥BC,可得△ADE∽△ABC,根據相似三角形的面積之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.考點:相似三角形的性質.13、【解題分析】
列表得出所有等可能結果,從中找到積為大于-4小于2的結果數,根據概率公式計算可得.【題目詳解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12種等可能結果,其中積為大于-4小于2的有6種結果,∴積為大于-4小于2的概率為=,故答案為.【題目點撥】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;用到的知識點為:概率=所求情況數與總情況數之比.14、【解題分析】
先利用等腰直角三角形的性質求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出結論.【題目詳解】如圖,過點A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵兩個同樣大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根據勾股定理得,DF==∴CD=BF+DF-BC=1+-2=-1,故答案為-1.【題目點撥】此題主要考查了勾股定理,等腰直角三角形的性質,正確作出輔助線是解本題的關鍵.15、【解題分析】試題分析:根據網格,利用勾股定理求出AC的長,AB的長,以及AB邊上的高,利用三角形面積公式求出三角形ABC面積,而三角形ABC面積可以由AC與BD乘積的一半來求,利用面積法即可求出BD的長:根據勾股定理得:,由網格得:S△ABC=×2×4=4,且S△ABC=AC?BD=×5BD,∴×5BD=4,解得:BD=.考點:1.網格型問題;2.勾股定理;3.三角形的面積.16、①②④.【解題分析】①△ODB與△OCA的面積相等;正確,由于A、B在同一反比例函數圖象上,則兩三角形面積相等,都為12②四邊形PAOB的面積不會發生變化;正確,由于矩形OCPD、三角形ODB、三角形OCA為定值,則四邊形PAOB的面積不會發生變化.③PA與PB始終相等;錯誤,不一定,只有當四邊形OCPD為正方形時滿足PA=PB.④當點A是PC的中點時,點B一定是PD的中點.正確,當點A是PC的中點時,k=2,則此時點B也一定是PD的中點.故一定正確的是①②④17、1.1【解題分析】【分析】先判斷出x,y中至少有一個是1,再用平均數求出x+y=11,即可得出結論.【題目詳解】∵一組數據4,x,1,y,7,9的眾數為1,∴x,y中至少有一個是1,∵一組數據4,x,1,y,7,9的平均數為6,∴(4+x+1+y+7+9)=6,∴x+y=11,∴x,y中一個是1,另一個是6,∴這組數為4,1,1,6,7,9,∴這組數據的中位數是×(1+6)=1.1,故答案為:1.1.【題目點撥】本題考查了眾數、平均數、中位數等概念,熟練掌握眾數、平均數、中位數的概念、判斷出x,y中至少有一個是1是解本題的關鍵.三、解答題(共7小題,滿分69分)18、﹣6+2【解題分析】分析:直接利用二次根式的性質以及絕對值的性質和特殊角的三角函數值分別化簡求出答案.詳解:原式=1﹣6+﹣1+3×=﹣5+﹣1+=﹣6+2.點睛:此題主要考查了實數運算,正確化簡各數是解題關鍵.19、(1)0≤x<20;(2)降價2.5元時,最大利潤是6125元【解題分析】
(1)根據“總利潤=單件利潤×銷售量”列出函數解析式,由“確保盈利”可得x的取值范圍.
(2)將所得函數解析式配方成頂點式可得最大值.【題目詳解】(1)根據題意得y=(70?x?50)(300+20x)=?20x2+100x+6000,∵70?x?50>0,且x≥0,∴0≤x<20.(2)∵y=?20x2+100x+6000=?20(x?)2+6125,∴當x=時,y取得最大值,最大值為6125,答:當降價2.5元時,每星期的利潤最大,最大利潤是6125元.【題目點撥】本題考查的知識點是二次函數的應用,解題的關鍵是熟練的掌握二次函數的應用.20、一次函數解析式為;反比例函數解析式為;.【解題分析】
(1)根據A(-1,0)代入y=kx+2,即可得到k的值;(2)把C(1,n)代入y=2x+2,可得C(1,4),代入反比例函數得到m的值;(3)先根據D(a,0),PD∥y軸,即可得出P(a,2a+2),Q(a,),再根據PQ=2QD,即可得,進而求得D點的坐標.【題目詳解】(1)把A(﹣1,0)代入y=kx+2得﹣k+2=0,解得k=2,∴一次函數解析式為y=2x+2;把C(1,n)代入y=2x+2得n=4,∴C(1,4),把C(1,4)代入y=得m=1×4=4,∴反比例函數解析式為y=;(2)∵PD∥y軸,而D(a,0),∴P(a,2a+2),Q(a,),∵PQ=2QD,∴2a+2﹣=2×,整理得a2+a﹣6=0,解得a1=2,a2=﹣3(舍去),∴D(2,0).【題目點撥】本題考查了反比例函數與一次函數的交點問題:求反比例函數與一次函數的交點坐標,把兩個函數關系式聯立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.也考查了待定系數法求函數的解析式.21、(1)x=-1;(2)﹣6≤y≤1;【解題分析】
(1)根據拋物線的對稱性和待定系數法求解即可;(2)根據二次函數的性質可得.【題目詳解】(1)把點(1,﹣2)代入y=x2﹣2mx+5m中,可得:1﹣2m+5m=﹣2,解得:m=﹣1,所以二次函數y=x2﹣2mx+5m的對稱軸是x=,(2)∵y=x2+2x﹣5=(x+1)2﹣6,∴當x=﹣1時,y取得最小值﹣6,由表可知當x=﹣4時y=1,當x=﹣1時y=﹣6,∴當﹣4≤x≤1時,﹣6≤y≤1.【題目點撥】本題考查了二次函數圖象與性質及待定系數法求函數解析式,熟練掌握二次函數的圖象與性質是解題的關鍵.22、(1)反比例函數的解析式為y=﹣;(2)D(﹣2,);﹣2<x<0或x>3;(3)P(4,0).【解題分析】試題分析:(1)把點B(3,﹣1)帶入反比例函數中,即可求得k的值;(2)聯立直線和反比例函數的解析式構成方程組,化簡為一個一元二次方程,解方程即可得到點D坐標,觀察圖象可得相應x的取值范圍;(3)把A(1,a)是反比例函數的解析式,求得a的值,可得點A坐標,用待定系數法求得直線AB的解析式,令y=0,解得x的值,即可求得點P的坐標.試題解析:(1)∵B(3,﹣1)在反比例函數的圖象上,∴-1=,∴m=-3,∴反比例函數的解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025建筑工程承包合同模板大全
- 護理物品管理體系構建
- 結算政策培訓體系框架
- 公司交流培訓體系構建與實施策略
- 全科醫學科護理體系與實務
- 年會新員工發言稿模版
- 工程投標總結模版
- 2025年平凡的世界心得體會模版
- 眶緣骨折的臨床護理
- 幼兒園語言教育與活動設計 課件 第三章 幼兒園語言教育活動設計的原理
- (完整版)反應釜課件
- 《統計學》完整ppt課件(PPT 228頁)
- 群體改良和輪回選擇課件
- D502-15D502等電位聯結安裝圖集
- GB∕T 20565-2022 鐵礦石和直接還原鐵 術語
- 保留脾臟的胰體尾切除術62頁PPT課件
- 中考詞匯背誦默寫
- 用藥錯誤報告處理制度
- 公園景觀工程施工方案及技術措施
- 想象作文復習課(
- 6000T近海油船設計論文
評論
0/150
提交評論