




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河南省周口商水縣聯考2024學年畢業升學考試模擬卷數學卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.用6個相同的小正方體搭成一個幾何體,若它的俯視圖如圖所示,則它的主視圖不可能是()A. B. C. D.2.一個多邊形的每一個外角都等于72°,這個多邊形是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形3.下列各式中,正確的是()A.t5·t5=2t5B.t4+t2=t6C.t3·t4=t12D.t2·t3=t54.下列代數運算正確的是()A.(x+1)2=x2+1 B.(x3)2=x5 C.(2x)2=2x2 D.x3?x2=x55.甲、乙兩盒中分別放入編號為1、2、3、4的形狀相同的4個小球,從甲盒中任意摸出一球,再從乙盒中任意摸出一球,將兩球編號數相加得到一個數,則得到數()的概率最大.A.3 B.4 C.5 D.66.為了解中學300名男生的身高情況,隨機抽取若干名男生進行身高測量,將所得數據整理后,畫出頻數分布直方圖(如圖).估計該校男生的身高在169.5cm~174.5cm之間的人數有()A.12 B.48 C.72 D.967.如圖,從邊長為a的正方形中去掉一個邊長為b的小正方形,然后將剩余部分剪后拼成一個長方形,上述操作能驗證的等式是()A. B.C. D.8.實數4的倒數是()A.4 B. C.﹣4 D.﹣9.如圖,已知∠1=∠2,要使△ABD≌△ACD,需從下列條件中增加一個,錯誤的選法是()A.∠ADB=∠ADC B.∠B=∠C C.AB=AC D.DB=DC10.如圖,在6×4的正方形網格中,△ABC的頂點均為格點,則sin∠ACB=()A. B.2 C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知反比例函數y=kx12.兩個等腰直角三角板如圖放置,點F為BC的中點,AG=1,BG=3,則CH的長為__________.13.化簡:=.14.如圖,已知一塊圓心角為270°的扇形鐵皮,用它做一個圓錐形的煙囪帽(接縫忽略不計),圓錐底面圓的直徑是60cm,則這塊扇形鐵皮的半徑是_____cm.15.若,則=.16.如圖,在△ABC中,∠C=90°,BC=16cm,AC=12cm,點P從點B出發,沿BC以2cm/s的速度向點C移動,點Q從點C出發,以1cm/s的速度向點A移動,若點P、Q分別從點B、C同時出發,設運動時間為ts,當t=__________時,△CPQ與△CBA相似.17.如圖,將一張矩形紙片ABCD沿對角線BD折疊,點C的對應點為,再將所折得的圖形沿EF折疊,使得點D和點A重合若,,則折痕EF的長為______.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標是(3,0),點C的坐標是(0,-3),動點P在拋物線上.(1)b=_________,c=_________,點B的坐標為_____________;(直接填寫結果)(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;(3)過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.19.(5分)小明對,,,四個中小型超市的女工人數進行了統計,并繪制了下面的統計圖表,已知超市有女工20人.所有超市女工占比統計表超市女工人數占比62.5%62.5%50%75%超市共有員工多少人?超市有女工多少人?若從這些女工中隨機選出一個,求正好是超市的概率;現在超市又招進男、女員工各1人,超市女工占比還是75%嗎?甲同學認為是,乙同學認為不是.你認為誰說的對,并說明理由.20.(8分)某農戶生產經銷一種農產品,已知這種產品的成本價為每千克20元,市場調查發現,該產品每天的銷售量y(千克)與銷售價x(元/千克)有如下關系:y=﹣2x+1.設這種產品每天的銷售利潤為W元.(1)該農戶想要每天獲得150元得銷售利潤,銷售價應定為每千克多少元?(2)如果物價部門規定這種農產品的銷售價不高于每千克28元,銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?21.(10分)如圖,△ABC中,∠C=90°,AC=BC,∠ABC的平分線BD交AC于點D,DE⊥AB于點E.(1)依題意補全圖形;(2)猜想AE與CD的數量關系,并證明.22.(10分)向陽中學校園內有一條林萌道叫“勤學路”,道路兩邊有如圖所示的路燈(在鉛垂面內的示意圖),燈柱BC的高為10米,燈柱BC與燈桿AB的夾角為120°.路燈采用錐形燈罩,在地面上的照射區域DE的長為13.3米,從D、E兩處測得路燈A的仰角分別為α和45°,且tanα=1.求燈桿AB的長度.23.(12分)已知關于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求證:無論實數m取何值,方程總有兩個實數根;(2)若方程兩個根均為正整數,求負整數m的值.24.(14分)深圳某書店為了迎接“讀書節”制定了活動計劃,以下是活動計劃書的部分信息:“讀書節“活動計劃書書本類別科普類文學類進價(單位:元)1812備注(1)用不超過16800元購進兩類圖書共1000本;(2)科普類圖書不少于600本;…(1)已知科普類圖書的標價是文學類圖書標價的1.5倍,若顧客用540元購買的圖書,能單獨購買科普類圖書的數量恰好比單獨購買文學類圖書的數量少10本,請求出兩類圖書的標價;(2)經市場調査后發現:他們高估了“讀書節”對圖書銷售的影響,便調整了銷售方案,科普類圖書每本標價降低a(0<a<5)元銷售,文學類圖書價格不變,那么書店應如何進貨才能獲得最大利潤?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解題分析】分析:根據主視圖和俯視圖之間的關系可以得出答案.詳解:∵主視圖和俯視圖的長要相等,∴只有D選項中的長和俯視圖不相等,故選D.點睛:本題主要考查的就是三視圖的畫法,屬于基礎題型.三視圖的畫法為:主視圖和俯視圖的長要相等;主視圖和左視圖的高要相等;左視圖和俯視圖的寬要相等.2、C【解題分析】
任何多邊形的外角和是360°,用360°除以一個外角度數即可求得多邊形的邊數.【題目詳解】360°÷72°=1,則多邊形的邊數是1.故選C.【題目點撥】本題主要考查了多邊形的外角和定理,已知外角求邊數的這種方法是需要熟記的內容.3、D【解題分析】選項A,根據同底數冪的乘法可得原式=t10;選項B,不是同類項,不能合并;選項C,根據同底數冪的乘法可得原式=t7;選項D,根據同底數冪的乘法可得原式=t5,四個選項中只有選項D正確,故選D.4、D【解題分析】
分別根據同底數冪的乘法、冪的乘方與積的乘方、完全平方公式進行逐一計算即可.【題目詳解】解:A.(x+1)2=x2+2x+1,故A錯誤;B.(x3)2=x6,故B錯誤;C.(2x)2=4x2,故C錯誤.D.x3?x2=x5,故D正確.故本題選D.【題目點撥】本題考查的是同底數冪的乘法、冪的乘方與積的乘方、完全平方公式,熟練掌握他們的定義是解題的關鍵.5、C【解題分析】解:甲和乙盒中1個小球任意摸出一球編號為1、2、3、1的概率各為,其中得到的編號相加后得到的值為{2,3,1,5,6,7,8}和為2的只有1+1;和為3的有1+2;2+1;和為1的有1+3;2+2;3+1;和為5的有1+1;2+3;3+2;1+1;和為6的有2+1;1+2;和為7的有3+1;1+3;和為8的有1+1.故p(5)最大,故選C.6、C【解題分析】
解:根據圖形,身高在169.5cm~174.5cm之間的人數的百分比為:,∴該校男生的身高在169.5cm~174.5cm之間的人數有300×24%=72(人).故選C.7、A【解題分析】
由圖形可以知道,由大正方形的面積-小正方形的面積=矩形的面積,進而可以證明平方差公式.【題目詳解】解:大正方形的面積-小正方形的面積=,
矩形的面積=,
故,
故選:A.【題目點撥】本題主要考查平方差公式的幾何意義,用兩種方法表示陰影部分的面積是解題的關鍵.8、B【解題分析】
根據互為倒數的兩個數的乘積是1,求出實數4的倒數是多少即可.【題目詳解】解:實數4的倒數是:1÷4=.故選:B.【題目點撥】此題主要考查了一個數的倒數的求法,要熟練掌握,解答此題的關鍵是要明確:互為倒數的兩個數的乘積是1.9、D【解題分析】
由全等三角形的判定方法ASA證出△ABD≌△ACD,得出A正確;由全等三角形的判定方法AAS證出△ABD≌△ACD,得出B正確;由全等三角形的判定方法SAS證出△ABD≌△ACD,得出C正確.由全等三角形的判定方法得出D不正確;【題目詳解】A正確;理由:在△ABD和△ACD中,∵∠1=∠2,AD=AD,∠ADB=∠ADC,∴△ABD≌△ACD(ASA);B正確;理由:在△ABD和△ACD中,∵∠1=∠2,∠B=∠C,AD=AD∴△ABD≌△ACD(AAS);C正確;理由:在△ABD和△ACD中,∵AB=AC,∠1=∠2,AD=AD,∴△ABD≌△ACD(SAS);D不正確,由這些條件不能判定三角形全等;故選:D.【題目點撥】本題考查了全等三角形的判定方法;三角形全等的判定是中考的熱點,熟練掌握全等三角形的判定方法是解決問題的關鍵.10、C【解題分析】
如圖,由圖可知BD=2、CD=1、BC=,根據sin∠BCA=可得答案.【題目詳解】解:如圖所示,∵BD=2、CD=1,∴BC===,則sin∠BCA===,故選C.【題目點撥】本題主要考查解直角三角形,解題的關鍵是熟練掌握正弦函數的定義和勾股定理.二、填空題(共7小題,每小題3分,滿分21分)11、34【解題分析】
由點B的坐標為(2,3),而點C為OB的中點,則C點坐標為(1,1.5),利用待定系數法可得到k=1.5,然后利用k的幾何意義即可得到△OAD的面積.【題目詳解】∵點B的坐標為(2,3),點C為OB的中點,∴C點坐標為(1,1.5),∴k=1×1.5=1.5,即反比例函數解析式為y=1.5x∴S△OAD=12×1.5=3故答案為:34【題目點撥】本題考查了反比例函數的幾何意義,一般的,從反比例函數y=kx(k為常數,k≠0)圖像上任一點P,向x軸和y軸作垂線你,以點P及點P的兩個垂足和坐標原點為頂點的矩形的面積等于常數k,以點P及點P的一個垂足和坐標原點為頂點的三角形的面積等于12、【解題分析】
依據∠B=∠C=45°,∠DFE=45°,即可得出∠BGF=∠CFH,進而得到△BFG∽△CHF,依據相似三角形的性質,即可得到=,即=,即可得到CH=.【題目詳解】解:∵AG=1,BG=3,∴AB=4,∵△ABC是等腰直角三角形,∴BC=4,∠B=∠C=45°,∵F是BC的中點,∴BF=CF=2,∵△DEF是等腰直角三角形,∴∠DFE=45°,∴∠CFH=180°﹣∠BFG﹣45°=135°﹣∠BFG,又∵△BFG中,∠BGF=180°﹣∠B﹣∠BFG=135°﹣∠BFG,∴∠BGF=∠CFH,∴△BFG∽△CHF,∴=,即=,∴CH=,故答案為.【題目點撥】本題主要考查了相似三角形的判定與性質,在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發揮基本圖形的作用.13、2【解題分析】
根據算術平方根的定義,求數a的算術平方根,也就是求一個正數x,使得x2=a,則x就是a的算術平方根,特別地,規定0的算術平方根是0.【題目詳解】∵22=4,∴=2.【題目點撥】本題考查求算術平方根,熟記定義是關鍵.14、40cm【解題分析】
首先根據圓錐的底面直徑求得圓錐的底面周長,然后根據底面周長等于展開扇形的弧長求得鐵皮的半徑即可.【題目詳解】∵圓錐的底面直徑為60cm,∴圓錐的底面周長為60πcm,∴扇形的弧長為60πcm,設扇形的半徑為r,則=60π,解得:r=40cm,故答案為:40cm.【題目點撥】本題考查了圓錐的計算,解題的關鍵是首先求得圓錐的底面周長,利用圓錐的底面周長等于扇形的弧長求解.15、1.【解題分析】試題分析:有意義,必須,,解得:x=3,代入得:y=0+0+2=2,∴==1.故答案為1.考點:二次根式有意義的條件.16、4.8或【解題分析】
根據題意可分兩種情況,①當CP和CB是對應邊時,△CPQ∽△CBA與②CP和CA是對應邊時,△CPQ∽△CAB,根據相似三角形的性質分別求出時間t即可.【題目詳解】①CP和CB是對應邊時,△CPQ∽△CBA,所以=,即=,解得t=4.8;②CP和CA是對應邊時,△CPQ∽△CAB,所以=,即=,解得t=.綜上所述,當t=4.8或時,△CPQ與△CBA相似.【題目點撥】此題主要考查相似三角形的性質,解題的關鍵是分情況討論.17、【解題分析】
首先由折疊的性質與矩形的性質,證得是等腰三角形,則在中,利用勾股定理,借助于方程即可求得AN的長,又由≌,易得:,由三角函數的性質即可求得MF的長,又由中位線的性質求得EM的長,則問題得解【題目詳解】如圖,設與AD交于N,EF與AD交于M,根據折疊的性質可得:,,,四邊形ABCD是矩形,,,,,,,設,則,在中,,,,即,,,,≌,,,,,,由折疊的性質可得:,,,,,故答案為.【題目點撥】本題考查了折疊的性質,全等三角形的判定與性質,三角函數的性質以及勾股定理等知識,綜合性較強,有一定的難度,解題時要注意數形結合思想與方程思想的應用.三、解答題(共7小題,滿分69分)18、(1),,(-1,0);(2)存在P的坐標是或;(1)當EF最短時,點P的坐標是:(,)或(,)【解題分析】
(1)將點A和點C的坐標代入拋物線的解析式可求得b、c的值,然后令y=0可求得點B的坐標;(2)分別過點C和點A作AC的垂線,將拋物線與P1,P2兩點先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A與拋物線的交點坐標即可;(1)連接OD.先證明四邊形OEDF為矩形,從而得到OD=EF,然后根據垂線段最短可求得點D的縱坐標,從而得到點P的縱坐標,然后由拋物線的解析式可求得點P的坐標.【題目詳解】解:(1)∵將點A和點C的坐標代入拋物線的解析式得:,解得:b=﹣2,c=﹣1,∴拋物線的解析式為.∵令,解得:,,∴點B的坐標為(﹣1,0).故答案為﹣2;﹣1;(﹣1,0).(2)存在.理由:如圖所示:①當∠ACP1=90°.由(1)可知點A的坐標為(1,0).設AC的解析式為y=kx﹣1.∵將點A的坐標代入得1k﹣1=0,解得k=1,∴直線AC的解析式為y=x﹣1,∴直線CP1的解析式為y=﹣x﹣1.∵將y=﹣x﹣1與聯立解得,(舍去),∴點P1的坐標為(1,﹣4).②當∠P2AC=90°時.設AP2的解析式為y=﹣x+b.∵將x=1,y=0代入得:﹣1+b=0,解得b=1,∴直線AP2的解析式為y=﹣x+1.∵將y=﹣x+1與聯立解得=﹣2,=1(舍去),∴點P2的坐標為(﹣2,5).綜上所述,P的坐標是(1,﹣4)或(﹣2,5).(1)如圖2所示:連接OD.由題意可知,四邊形OFDE是矩形,則OD=EF.根據垂線段最短,可得當OD⊥AC時,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中點.又∵DF∥OC,∴DF=OC=,∴點P的縱坐標是,∴,解得:x=,∴當EF最短時,點P的坐標是:(,)或(,).19、(1)32(人),25(人);(2);(3)乙同學,見解析.【解題分析】
(1)用A超市有女工人數除以女工人數占比,可求A超市共有員工多少人;先求出D超市女工所占圓心角度數,進一步得到四個中小型超市的女工人數比,從而求得B超市有女工多少人;
(2)先求出C超市有女工人數,進一步得到四個中小型超市共有女工人數,再根據概率的定義即可求解;
(3)先求出D超市有女工人數、共有員工多少人,再得到D超市又招進男、女員工各1人,D超市有女工人數、共有員工多少人,再根據概率的定義即可求解.【題目詳解】解:(1)A超市共有員工:20÷62.5%=32(人),∵360°-80°-100°-120°=60°,∴四個超市女工人數的比為:80:100:120:60=4:5:6:3,∴B超市有女工:20×=25(人);(2)C超市有女工:20×=30(人).四個超市共有女工:20×=90(人).從這些女工中隨機選出一個,正好是C超市的概率為=.(3)乙同學.理由:D超市有女工20×=15(人),共有員工15÷75%=20(人),再招進男、女員工各1人,共有員工22人,其中女工是16人,女工占比為=≠75%.【題目點撥】本題考查了統計表與扇形統計圖的綜合,以及概率的知識.用到的知識點為:概率=所求情況數與總情況數之比.20、(1)該農戶想要每天獲得150元得銷售利潤,銷售價應定為每千克25元或35元;(2)192元.【解題分析】
(1)直接利用每件利潤×銷量=總利潤進而得出等式求出答案;(2)直接利用每件利潤×銷量=總利潤進而得出函數關系式,利用二次函數增減性求出答案.【題目詳解】(1)根據題意得:(x﹣20)(﹣2x+1)=150,解得:x1=25,x2=35,答:該農戶想要每天獲得150元得銷售利潤,銷售價應定為每千克25元或35元;(2)由題意得:W=(x﹣20)(﹣2x+1)=﹣2(x﹣30)2+200,∵a=﹣2,∴拋物線開口向下,當x<30時,y隨x的增大而增大,又由于這種農產品的銷售價不高于每千克28元∴當x=28時,W最大=﹣2×(28﹣30)2+200=192(元).∴銷售價定為每千克28元時,每天的銷售利潤最大,最大利潤是192元.【題目點撥】此題主要考查了一元二次方程的應用以及二次函數的應用,正確應用二次函數增減性是解題關鍵.21、(1)見解析;(2)見解析.【解題分析】
(1)根據題意畫出圖形即可;(2)利用等腰三角形的性質得∠A=45°.則∠ADE=∠A=45°,所以AE=DE,再根據角平分線性質得CD=DE,從而得到AE=CD.【題目詳解】解:(1)如圖:(2)AE與CD的數量關系為AE=CD.證明:∵∠C=90°,AC=BC,∴∠A=45°.∵DE⊥AB,∴∠ADE=∠A=45°.∴AE=DE,∵BD平分∠ABC,∴CD=DE,∴AE=CD.【題目點撥】此題考查等腰三角形的性質,角平分線的性質,解題關鍵在于根據題意作輔助線.22、燈桿AB的長度為2.3米.【解題分析】
過點A作AF⊥CE,交CE于點F,過點B作BG⊥AF,交AF于點G,則FG=BC=2.設AF=x知EF=AF=x、DF==,由DE=13.3求得x=11.4,據此知AG=AF﹣GF=1.4,再求得∠ABG=∠ABC﹣∠CBG=30°可得AB=2AG=2.3.【題目詳解】過點A作AF⊥CE,交CE于點F,過點B作BG⊥AF,交AF于點G,則FG=BC=2.由題意得:∠ADE=α,∠E=45°.設AF=x.∵∠E=45°,∴EF=AF=x.在Rt△ADF中,∵tan∠ADF=,∴DF==.∵DE=13.3,∴x+=13.3,∴x=11.4,∴AG=AF﹣GF=11.4﹣2=1.4.∵∠ABC=120°,∴∠ABG=∠ABC﹣∠CBG=120°﹣90°=30°,∴AB=2AG=2.3.答:燈桿AB的長度為2.3米.【題目點撥】本題主要考查解直角三角形﹣仰角俯角問題,解題的關鍵是結合題意構建直角三角形并熟練掌握三角函數的定義及其應用能力.23、(1)見解析;(2)m=-1.【解題分析】
(1)根據方程的系數結合根的判別式,即可得出△=1>1,由此即可證出:無論實數m取什么值,方程總有兩個不相等的實數根;
(2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根據已知條件即可得出結論.【題目詳解】(1)∵△=(m+3)2﹣4(m+2)=(m+1)2∴無論m取何值,(m+1)2恒大于等于1∴原方程總有兩個實數根(2)原方程可
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建立可行性研究報告的案例研究與對比分析
- 流量創業計劃書范文怎么寫
- 2025年工作室工作計劃 15
- 噴漆鋁件項目可行性研究報告模板及范文
- 大型被動隔振平臺測試規范-編制說明
- 保密知識考試題庫(研優卷)
- 2025年中國羽絨手套行業市場規模及未來投資方向研究報告
- 中外電視新聞節目比較
- 廣西南寧市重點中學 2022-2023學年高二下學期期末英語試題(含答案)
- 工地扣件進場管理制度
- 養殖場安全教育培訓
- 心源性猝死的預防和急救
- 教師交通安全法規
- 2025-2030年中國蛭石市場發展前景及投資策略分析報告
- 江蘇省淮安市(2024年-2025年小學六年級語文)統編版期末考試(下學期)試卷及答案
- 文創產品設計課件
- 土地平整工程施工方案與技術措施
- 2015-2019高考全國卷歷史小論文真題(附答案)資料
- 基層數字化治理能力提升的內在邏輯與創新路徑
- 《公路橋梁阻尼模數式伸縮裝置》
- 2024-2025學年廣東省廣州市高二下學期7月期末英語質量檢測試題(含答案)
評論
0/150
提交評論