




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆遼寧省鞍山市鐵西區(qū)、立山區(qū)中考數(shù)學(xué)猜題卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.已知關(guān)于x的方程恰有一個實根,則滿足條件的實數(shù)a的值的個數(shù)為()A.1 B.2 C.3 D.42.如圖所示的幾何體的俯視圖是(
)A. B. C. D.3.下面說法正確的個數(shù)有()①如果三角形三個內(nèi)角的比是1∶2∶3,那么這個三角形是直角三角形;②如果三角形的一個外角等于與它相鄰的一個內(nèi)角,則這么三角形是直角三角形;③如果一個三角形的三條高的交點恰好是三角形的一個頂點,那么這個三角形是直角三角形;④如果∠A=∠B=12⑤若三角形的一個內(nèi)角等于另兩個內(nèi)角之差,那么這個三角形是直角三角形;⑥在△ABC中,若∠A+∠B=∠C,則此三角形是直角三角形.A.3個B.4個C.5個D.6個4.如圖,已知點A(0,1),B(0,﹣1),以點A為圓心,AB為半徑作圓,交x軸的正半軸于點C,則∠BAC等于()A.90° B.120° C.60° D.30°5.如圖,矩形ABCD中,E為DC的中點,AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點F,AP、BE相交于點O.下列結(jié)論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④6.從邊長為的大正方形紙板中挖去一個邊長為的小正方形紙板后,將其裁成四個相同的等腰梯形(如圖甲),然后拼成一個平行四邊形(如圖乙)。那么通過計算兩個圖形陰影部分的面積,可以驗證成立的公式為()A. B.C. D.7.如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是()A.2 B. C. D.28.化簡的結(jié)果是()A.1 B. C. D.9.下列計算正確的是()A.﹣5x﹣2x=﹣3x B.(a+3)2=a2+9 C.(﹣a3)2=a5 D.a(chǎn)2p÷a﹣p=a3p10.正比例函數(shù)y=(k+1)x,若y隨x增大而減小,則k的取值范圍是()A.k>1 B.k<1 C.k>﹣1 D.k<﹣1二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,△ABC中,CD⊥AB于D,E是AC的中點.若AD=6,DE=5,則CD的長等于.12.不等式1﹣2x<6的負整數(shù)解是___________.13.如圖,已知AB∥CD,直線EF分別交AB、CD于點E、F,EG平分∠BEF,若∠1=50°,則∠2的度數(shù)為_______.14.如圖,10塊相同的長方形墻磚拼成一個長方形,設(shè)長方形墻磚的長為x厘米,則依題意列方程為_________.15.某十字路口的交通信號燈每分鐘紅燈亮30秒,綠燈亮25秒,黃燈亮5秒,當你抬頭看信號燈時,是綠燈的概率為____.16.填在下列各圖形中的三個數(shù)之間都有相同的規(guī)律,根據(jù)此規(guī)律,a的值是____.三、解答題(共8題,共72分)17.(8分)李寧準備完成題目;解二元一次方程組,發(fā)現(xiàn)系數(shù)“□”印刷不清楚.他把“□”猜成3,請你解二元一次方程組;張老師說:“你猜錯了”,我看到該題標準答案的結(jié)果x、y是一對相反數(shù),通過計算說明原題中“□”是幾?18.(8分)向陽中學(xué)校園內(nèi)有一條林萌道叫“勤學(xué)路”,道路兩邊有如圖所示的路燈(在鉛垂面內(nèi)的示意圖),燈柱BC的高為10米,燈柱BC與燈桿AB的夾角為120°.路燈采用錐形燈罩,在地面上的照射區(qū)域DE的長為13.3米,從D、E兩處測得路燈A的仰角分別為α和45°,且tanα=1.求燈桿AB的長度.19.(8分)如圖,在△ABC中,∠ABC=90°,BD⊥AC,垂足為D,E為BC邊上一動點(不與B、C重合),AE、BD交于點F.(1)當AE平分∠BAC時,求證:∠BEF=∠BFE;(2)當E運動到BC中點時,若BE=2,BD=2.4,AC=5,求AB的長.20.(8分)某家電銷售商場電冰箱的銷售價為每臺1600元,空調(diào)的銷售價為每臺1400元,每臺電冰箱的進價比每臺空調(diào)的進價多300元,商場用9000元購進電冰箱的數(shù)量與用7200元購進空調(diào)數(shù)量相等.(1)求每臺電冰箱與空調(diào)的進價分別是多少?(2)現(xiàn)在商場準備一次購進這兩種家電共100臺,設(shè)購進電冰箱x臺,這100臺家電的銷售利潤為Y元,要求購進空調(diào)數(shù)量不超過電冰箱數(shù)量的2倍,總利潤不低于16200元,請分析合理的方案共有多少種?(3)實際進貨時,廠家對電冰箱出廠價下調(diào)K(0<K<150)元,若商場保持這兩種家電的售價不變,請你根據(jù)以上信息及(2)中條件,設(shè)計出使這100臺家電銷售總利潤最大的進貨方案.21.(8分)在△ABC中,,以邊AB上一點O為圓心,OA為半徑的圈與BC相切于點D,分別交AB,AC于點E,F(xiàn)如圖①,連接AD,若,求∠B的大小;如圖②,若點F為的中點,的半徑為2,求AB的長.22.(10分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=mx(1)求一次函數(shù),反比例函數(shù)的表達式;(2)求證:點C為線段AP的中點;(3)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,說明理由并求出點D的坐標;如果不存在,說明理由.23.(12分)對于某一函數(shù)給出如下定義:若存在實數(shù)p,當其自變量的值為p時,其函數(shù)值等于p,則稱p為這個函數(shù)的不變值.在函數(shù)存在不變值時,該函數(shù)的最大不變值與最小不變值之差q稱為這個函數(shù)的不變長度.特別地,當函數(shù)只有一個不變值時,其不變長度q為零.例如:下圖中的函數(shù)有0,1兩個不變值,其不變長度q等于1.(1)分別判斷函數(shù)y=x-1,y=x-1,y=x2有沒有不變值?如果有,直接寫出其不變長度;(2)函數(shù)y=2x2-bx.①若其不變長度為零,求b的值;②若1≤b≤3,求其不變長度q的取值范圍;(3)記函數(shù)y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G2,函數(shù)G的圖象由G1和G2兩部分組成,若其不變長度q滿足0≤q≤3,則m的取值范圍為.24.某中學(xué)采用隨機的方式對學(xué)生掌握安全知識的情況進行測評,并按成績高低分成優(yōu)、良、中、差四個等級進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請根據(jù)有關(guān)信息解答:(1)接受測評的學(xué)生共有________人,扇形統(tǒng)計圖中“優(yōu)”部分所對應(yīng)扇形的圓心角為________°,并補全條形統(tǒng)計圖;(2)若該校共有學(xué)生1200人,請估計該校對安全知識達到“良”程度的人數(shù);(3)測評成績前五名的學(xué)生恰好3個女生和2個男生,現(xiàn)從中隨機抽取2人參加市安全知識競賽,請用樹狀圖或列表法求出抽到1個男生和1個女生的概率.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】
先將原方程變形,轉(zhuǎn)化為整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一個實數(shù)根,因此,方程①的根有兩種情況:(1)方程①有兩個相等的實數(shù)根,此二等根使x(x-2)≠1;(2)方程①有兩個不等的實數(shù)根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.針對每一種情況,分別求出a的值及對應(yīng)的原方程的根.【題目詳解】去分母,將原方程兩邊同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情況有兩種:(1)方程①有兩個相等的實數(shù)根,即△=9﹣3×2(3﹣a)=1.解得a=.當a=時,解方程2x2﹣3x+(﹣+3)=1,得x1=x2=.(2)方程①有兩個不等的實數(shù)根,而其中一根使原方程分母為零,即方程①有一個根為1或2.(i)當x=1時,代入①式得3﹣a=1,即a=3.當a=3時,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即這時方程①的另一個根是x=1.4.它不使分母為零,確是原方程的唯一根.(ii)當x=2時,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.當a=5時,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣.x1是增根,故x=﹣為方程的唯一實根;因此,若原分式方程只有一個實數(shù)根時,所求的a的值分別是,3,5共3個.故選C.【題目點撥】考查了分式方程的解法及增根問題.由于原分式方程去分母后,得到一個含有字母的一元二次方程,所以要分情況進行討論.理解分式方程產(chǎn)生增根的原因及一元二次方程解的情況從而正確進行分類是解題的關(guān)鍵.2、B【解題分析】
根據(jù)俯視圖是從上往下看得到的圖形解答即可.【題目詳解】從上往下看得到的圖形是:故選B.【題目點撥】本題考查三視圖的知識,解決此類圖的關(guān)鍵是由三視圖得到相應(yīng)的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線3、C【解題分析】試題分析:①∵三角形三個內(nèi)角的比是1:2:3,∴設(shè)三角形的三個內(nèi)角分別為x,2x,3x,∴x+2x+3x=180°,解得x=30°,∴3x=3×30°=90°,∴此三角形是直角三角形,故本小題正確;②∵三角形的一個外角與它相鄰的一個內(nèi)角的和是180°,∴若三角形的一個外角等于與它相鄰的一個內(nèi)角,則此三角形是直角三角形,故本小題正確;③∵直角三角形的三條高的交點恰好是三角形的一個頂點,∴若三角形的三條高的交點恰好是三角形的一個頂點,那么這個三角形是直角三角形,故本小題正確;④∵∠A=∠B=12∴設(shè)∠A=∠B=x,則∠C=2x,∴x+x+2x=180°,解得x=45°,∴2x=2×45°=90°,∴此三角形是直角三角形,故本小題正確;⑤∵三角形的一個外角等于與它不相鄰的兩內(nèi)角之和,三角形的一個內(nèi)角等于另兩個內(nèi)角之差,∴三角形一個內(nèi)角也等于另外兩個內(nèi)角的和,∴這個三角形中有一個內(nèi)角和它相鄰的外角是相等的,且外角與它相鄰的內(nèi)角互補,∴有一個內(nèi)角一定是90°,故這個三角形是直角三角形,故本小題正確;⑥∵三角形的一個外角等于與它不相鄰的兩內(nèi)角之和,又一個內(nèi)角也等于另外兩個內(nèi)角的和,由此可知這個三角形中有一個內(nèi)角和它相鄰的外角是相等的,且外角與它相鄰的內(nèi)角互補,∴有一個內(nèi)角一定是90°,故這個三角形是直角三角形,故本小題正確.故選D.考點:1.三角形內(nèi)角和定理;2.三角形的外角性質(zhì).4、C【解題分析】解:∵A(0,1),B(0,﹣1),∴AB=1,OA=1,∴AC=1.在Rt△AOC中,cos∠BAC==,∴∠BAC=60°.故選C.點睛:本題考查了垂徑定理的應(yīng)用,關(guān)鍵是求出AC、OA的長.解題時注意:垂直弦的直徑平分這條弦,并且平分弦所對的兩條弧.5、B【解題分析】
由條件設(shè)AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=∠BEP,運用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結(jié)論.【題目詳解】解:設(shè)AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過點E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【題目點撥】本題考查了矩形的性質(zhì)的運用,相似三角形的判定及性質(zhì)的運用,特殊角的正切值的運用,勾股定理的運用及直角三角形的性質(zhì)的運用,解答時根據(jù)比例關(guān)系設(shè)出未知數(shù)表示出線段的長度是關(guān)鍵.6、D【解題分析】
分別根據(jù)正方形及平行四邊形的面積公式求得甲、乙中陰影部分的面積,從而得到可以驗證成立的公式.【題目詳解】陰影部分的面積相等,即甲的面積=a2﹣b2,乙的面積=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以驗證成立的公式為:a2﹣b2=(a+b)(a﹣b).故選:D.【題目點撥】考點:等腰梯形的性質(zhì);平方差公式的幾何背景;平行四邊形的性質(zhì).7、C【解題分析】
由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性質(zhì),即可求得PE的值,繼而求得OP的長,然后由直角三角形斜邊上的中線等于斜邊的一半,即可求得DM的長.【題目詳解】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE=,∴OP=2PE=2,∵PD⊥OA,點M是OP的中點,∴DM=OP=.故選C.考點:角平分線的性質(zhì);含30度角的直角三角形;直角三角形斜邊上的中線;勾股定理.8、A【解題分析】原式=?(x–1)2+=+==1,故選A.9、D【解題分析】
直接利用合并同類項法則以及完全平方公式和整式的乘除運算法則分別計算即可得出答案.【題目詳解】解:A.﹣5x﹣2x=﹣7x,故此選項錯誤;B.(a+3)2=a2+6a+9,故此選項錯誤;C.(﹣a3)2=a6,故此選項錯誤;D.a(chǎn)2p÷a﹣p=a3p,正確.故選D.【題目點撥】本題主要考查了合并同類項以及完全平方公式和整式的乘除運算,正確掌握運算法則是解題的關(guān)鍵.10、D【解題分析】
根據(jù)正比例函數(shù)圖象與系數(shù)的關(guān)系列出關(guān)于k的不等式k+1<0,然后解不等式即可.【題目詳解】解:∵正比例函數(shù)y=(k+1)x中,y的值隨自變量x的值增大而減小,∴k+1<0,解得,k<-1;故選D.【題目點撥】本題主要考查正比例函數(shù)圖象在坐標平面內(nèi)的位置與k的關(guān)系.解答本題注意理解:直線y=kx所在的位置與k的符號有直接的關(guān)系.k>0時,直線必經(jīng)過一、三象限,y隨x的增大而增大;k<0時,直線必經(jīng)過二、四象限,y隨x的增大而減小.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解題分析】
由“直角三角形斜邊上的中線等于斜邊的一半”求得AC=2DE=2;然后在直角△ACD中,利用勾股定理來求線段CD的長度即可.【題目詳解】∵△ABC中,CD⊥AB于D,E是AC的中點,DE=5,∴DE=AC=5,∴AC=2.在直角△ACD中,∠ADC=90°,AD=6,AC=2,則根據(jù)勾股定理,得.故答案是:1.12、﹣2,﹣1【解題分析】試題分析:根據(jù)不等式的性質(zhì)求出不等式的解集,找出不等式的整數(shù)解即可.解:1﹣2x<6,移項得:﹣2x<6﹣1,合并同類項得:﹣2x<5,不等式的兩邊都除以﹣2得:x>﹣,∴不等式的負整數(shù)解是﹣2,﹣1,故答案為:﹣2,﹣1.點評:本題主要考查對解一元一次不等式,一元一次不等式的整數(shù)解,不等式的性質(zhì)等知識點的理解和掌握,能根據(jù)不等式的性質(zhì)求出不等式的解集是解此題的關(guān)鍵.13、65°【解題分析】因為AB∥CD,所以∠BEF=180°-∠1=130°,因為EG平分∠BEF,所以∠BEG=65°,因為AB∥CD,所以∠2=∠BEG=65°.14、x+x=75.【解題分析】試題解析:設(shè)長方形墻磚的長為x厘米,
可得:x+x=75.15、【解題分析】
隨機事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)÷所有可能出現(xiàn)的結(jié)果數(shù),據(jù)此用綠燈亮的時間除以三種燈亮的總時間,求出抬頭看信號燈時,是綠燈的概率為多少即可.【題目詳解】抬頭看信號燈時,是綠燈的概率為.故答案為:.【題目點撥】此題主要考查了概率公式的應(yīng)用,要熟練掌握,解答此題的關(guān)鍵是要明確:(1)隨機事件A的概率P(A)=事件A可能出現(xiàn)的結(jié)果數(shù)÷所有可能出現(xiàn)的結(jié)果數(shù).(2)P(必然事件)=1.(3)P(不可能事件)=2.16、1.【解題分析】尋找規(guī)律:上面是1,2,3,4,…,;左下是1,4=22,9=32,16=42,…,;右下是:從第二個圖形開始,左下數(shù)字減上面數(shù)字差的平方:(4-2)2,(9-3)2,(16-4)2,…∴a=(36-6)2=1.三、解答題(共8題,共72分)17、(1);(2)-1【解題分析】
(1)②+①得出4x=-4,求出x,把x的值代入①求出y即可;(2)把x=-y代入x-y=4求出y,再求出x,最后把x、y代入②求出答案即可.【題目詳解】解:(1)①+②得,.將時代入①得,,∴.(2)設(shè)“□”為a,∵x、y是一對相反數(shù),∴把x=-y代入x-y=4得:-y-y=4,解得:y=-2,即x=2,所以方程組的解是,代入ax+y=-8得:2a-2=-8,解得:a=-1,即原題中“□”是-1.【題目點撥】本題考查了解二元一次方程組,也考查了二元一次方程組的解,能得出關(guān)于a的方程是解(2)的關(guān)鍵.18、燈桿AB的長度為2.3米.【解題分析】
過點A作AF⊥CE,交CE于點F,過點B作BG⊥AF,交AF于點G,則FG=BC=2.設(shè)AF=x知EF=AF=x、DF==,由DE=13.3求得x=11.4,據(jù)此知AG=AF﹣GF=1.4,再求得∠ABG=∠ABC﹣∠CBG=30°可得AB=2AG=2.3.【題目詳解】過點A作AF⊥CE,交CE于點F,過點B作BG⊥AF,交AF于點G,則FG=BC=2.由題意得:∠ADE=α,∠E=45°.設(shè)AF=x.∵∠E=45°,∴EF=AF=x.在Rt△ADF中,∵tan∠ADF=,∴DF==.∵DE=13.3,∴x+=13.3,∴x=11.4,∴AG=AF﹣GF=11.4﹣2=1.4.∵∠ABC=120°,∴∠ABG=∠ABC﹣∠CBG=120°﹣90°=30°,∴AB=2AG=2.3.答:燈桿AB的長度為2.3米.【題目點撥】本題主要考查解直角三角形﹣仰角俯角問題,解題的關(guān)鍵是結(jié)合題意構(gòu)建直角三角形并熟練掌握三角函數(shù)的定義及其應(yīng)用能力.19、(1)證明見解析;(1)2【解題分析】分析:(1)根據(jù)角平分線的定義可得∠1=∠1,再根據(jù)等角的余角相等求出∠BEF=∠AFD,然后根據(jù)對頂角相等可得∠BFE=∠AFD,等量代換即可得解;(1)根據(jù)中點定義求出BC,利用勾股定理列式求出AB即可.詳解:(1)如圖,∵AE平分∠BAC,∴∠1=∠1.∵BD⊥AC,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD.∵∠BFE=∠AFD(對頂角相等),∴∠BEF=∠BFE;(1)∵BE=1,∴BC=4,由勾股定理得:AB===2.點睛:本題考查了直角三角形的性質(zhì),勾股定理的應(yīng)用,等角的余角相等的性質(zhì),熟記各性質(zhì)并準確識圖是解題的關(guān)鍵.20、(1)每臺空調(diào)的進價為1200元,每臺電冰箱的進價為1500元;(2)共有5種方案;(3)當100<k<150時,購進電冰箱38臺,空調(diào)62臺,總利潤最大;當0<k<100時,購進電冰箱34臺,空調(diào)66臺,總利潤最大,當k=100時,無論采取哪種方案,y1恒為20000元.【解題分析】
(1)用“用9000元購進電冰箱的數(shù)量與用7200元購進空調(diào)數(shù)量相等”建立方程即可;(2)建立不等式組求出x的范圍,代入即可得出結(jié)論;(3)建立y1=(k﹣100)x+20000,分三種情況討論即可.【題目詳解】(1)設(shè)每臺空調(diào)的進價為m元,則每臺電冰箱的進價(m+300)元,由題意得,,∴m=1200,經(jīng)檢驗,m=1200是原分式方程的解,也符合題意,∴m+300=1500元,答:每臺空調(diào)的進價為1200元,每臺電冰箱的進價為1500元;(2)由題意,y=(1600﹣1500)x+(1400﹣1200)(100﹣x)=﹣100x+20000,∵,∴33≤x≤38,∵x為正整數(shù),∴x=34,35,36,37,38,即:共有5種方案;(3)設(shè)廠家對電冰箱出廠價下調(diào)k(0<k<150)元后,這100臺家電的銷售總利潤為y1元,∴y1=(1600﹣1500+k)x+(1400﹣1200)(100﹣x)=(k﹣100)x+20000,當100<k<150時,y1隨x的最大而增大,∴x=38時,y1取得最大值,即:購進電冰箱38臺,空調(diào)62臺,總利潤最大,當0<k<100時,y1隨x的最大而減小,∴x=34時,y1取得最大值,即:購進電冰箱34臺,空調(diào)66臺,總利潤最大,當k=100時,無論采取哪種方案,y1恒為20000元.【題目點撥】本題考查了一次函數(shù)的應(yīng)用,分式方程的應(yīng)用,不等式組的應(yīng)用,根據(jù)題意找出等量關(guān)系是解題的關(guān)鍵.21、(1)∠B=40°;(2)AB=6.【解題分析】
(1)連接OD,由在△ABC中,∠C=90°,BC是切線,易得AC∥OD
,即可求得∠CAD=∠ADO
,繼而求得答案;
(2)首先連接OF,OD,由AC∥OD得∠OFA=∠FOD
,由點F為弧AD的中點,易得△AOF是等邊三角形,繼而求得答案.【題目詳解】解:(1)如解圖①,連接OD,∵BC切⊙O于點D,∴∠ODB=90°,∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠DAO=∠ADO=∠CAD=25°,∴∠DOB=∠CAO=∠CAD+∠DAO=50°,∵∠ODB=90°,∴∠B=90°-∠DOB=90°-50°=40°;(2)如解圖②,連接OF,OD,∵AC∥OD,∴∠OFA=∠FOD,∵點F為弧AD的中點,∴∠AOF=∠FOD,∴∠OFA=∠AOF,∴AF=OA,∵OA=OF,∴△AOF為等邊三角形,∴∠FAO=60°,則∠DOB=60°,∴∠B=30°,∵在Rt△ODB中,OD=2,∴OB=4,∴AB=AO+OB=2+4=6.【題目點撥】本題考查了切線的性質(zhì),平行線的性質(zhì),等腰三角形的性質(zhì),弧弦圓心角的關(guān)系,等邊三角形的判定與性質(zhì),含30°角的直角三角形的性質(zhì).熟練掌握切線的性質(zhì)是解(1)的關(guān)鍵,證明△AOF為等邊三角形是解(2)的關(guān)鍵.22、(1)y=24x+1.(2)點C為線段AP的中點.(3)存在點D,使四邊形BCPD為菱形,點D【解題分析】試題分析:(1)由點A與點B關(guān)于y軸對稱,可得AO=BO,再由A的坐標求得B點的坐標,從而求得點P的坐標,將P坐標代入反比例解析式求出m的值,即可確定出反比例解析式,將A與P坐標代入一次函數(shù)解析式求出k與b的值,確定出一次函數(shù)解析式;(2)由AO=BO,PB∥CO,即可證得結(jié)論;(3)假設(shè)存在這樣的D點,使四邊形BCPD為菱形,過點C作CD平行于x軸,交PB于點E,交反比例函數(shù)y=-8試題解析:(1)∵點A與點B關(guān)于y軸對稱,∴AO=BO,∵A(-4,0),∴B(4,0),∴P(4,2),把P(4,2)代入y=mx得m∴反比例函數(shù)的解析式:y=8x把A(-4,0),P(4,2)代入y=kx+b得:{0=-4k+b2=4k+b,解得:所以一次函數(shù)的解析式:y=24x(2)∵點A與點B關(guān)于y軸對稱,∴OA=OB∵PB丄x軸于點B,∴∠PBA=90°,∵∠COA=90°,∴PB∥CO,∴點C為線段AP的中點.(3)存在點D,使四邊形BCPD為菱形∵點C為線段AP的中點,∴BC=12∴BC和PC是菱形的兩條邊由y=14x+1,可得點C過點C作CD平行于x軸,交PB于點E,交反比例函數(shù)y=-8x的圖象于點分別連結(jié)PD、BD,∴點D(8,1),BP⊥CD∴PE=BE=1,∴CE=DE=4,∴PB與CD互相垂直平分,∴四邊形BCPD為菱形.∴點D(8,1)即為所求.23、詳見解析.【解題分析】試題分析:(1)根據(jù)定義分別求解即可求得答案;(1)①首先由函數(shù)y=1x1﹣bx=x,求得x(1x﹣b﹣1)=2,然后由其不變長度為零,求得答案;②由①,利用1≤b≤3,可求得其不變長度q的取值范圍;(3)由記函數(shù)y=x1﹣1x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G1,可得函數(shù)G的圖象關(guān)于x=m對稱,然后根據(jù)定義分別求得函數(shù)的不變值,再分類討論即可求得答案.試題解析:解:(1)∵函數(shù)y=x﹣1,令y=x,則x﹣1=x,無解;∴函數(shù)y=x﹣1沒有不變值;∵y=x-1=,令y
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業(yè)環(huán)保技術(shù)與減排策略
- 工業(yè)節(jié)能減排的技術(shù)路徑與措施
- 工作技能與專業(yè)能力的提升路徑
- 工作之余的健康營養(yǎng)生活方式養(yǎng)成建議
- 工作壓力下的時間分配藝術(shù)
- 工作場所技能需求的調(diào)研與分析
- 工程中遇到的技術(shù)難題與創(chuàng)新實踐
- 工程中的計算機仿真技術(shù)應(yīng)用
- 工程師培訓(xùn)中數(shù)據(jù)挖掘技術(shù)的應(yīng)用
- 工程倫理在水利工程中的實踐研究
- 義務(wù)教育歷史課程標準(2022年版)
- 消防行業(yè)特有工種職業(yè)技能鑒定申報登記表參考模板范本
- 石油化工工藝管道安裝施工方案【實用文檔】doc
- 第4章 帶傳動設(shè)計 (1)課件
- 人教版七年級下冊英語單詞辨音訓(xùn)練題(一)
- 公共政策的經(jīng)濟學(xué)分析課件
- 新世紀健康飲食課件
- 上海市2013年基準地價更新成果
- 道德與法治四年級(下)第二單元單元備課
- 蘇州市吳江區(qū)2021-2022蘇教版五年級數(shù)學(xué)下冊期末試卷真題
- “363生態(tài)課堂”模式及流程
評論
0/150
提交評論