2024屆山東省臨沂莒南縣聯考中考數學模擬精編試卷含解析_第1頁
2024屆山東省臨沂莒南縣聯考中考數學模擬精編試卷含解析_第2頁
2024屆山東省臨沂莒南縣聯考中考數學模擬精編試卷含解析_第3頁
2024屆山東省臨沂莒南縣聯考中考數學模擬精編試卷含解析_第4頁
2024屆山東省臨沂莒南縣聯考中考數學模擬精編試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆山東省臨沂莒南縣聯考中考數學模擬精編試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.小明家1至6月份的用水量統計如圖所示,關于這組數據,下列說法錯誤的是().A.眾數是6噸 B.平均數是5噸 C.中位數是5噸 D.方差是2.李老師在編寫下面這個題目的答案時,不小心打亂了解答過程的順序,你能幫他調整過來嗎?證明步驟正確的順序是已知:如圖,在中,點D,E,F分別在邊AB,AC,BC上,且,,求證:∽.證明:又,,,,∽.A. B. C. D.3.若分式有意義,則a的取值范圍是()A.a≠1 B.a≠0 C.a≠1且a≠0 D.一切實數4.已知函數y=的圖象如圖,當x≥﹣1時,y的取值范圍是()A.y<﹣1 B.y≤﹣1 C.y≤﹣1或y>0 D.y<﹣1或y≥05.如圖,二次函數y=ax2+bx+c的圖象與y軸正半軸相交,其頂點坐標為(12,1),下列結論:①ac<1;②a+b=1;③4ac﹣b2A.1B.2C.3D.46.計算﹣1﹣(﹣4)的結果為()A.﹣3 B.3 C.﹣5 D.57.下列計算正確的是()A. B.(﹣a2)3=a6 C. D.6a2×2a=12a38.一個幾何體的俯視圖如圖所示,其中的數字表示該位置上小正方體的個數,那么這個幾何體的主視圖是()A. B. C. D.9.若等式(-5)□5=–1成立,則□內的運算符號為()A.+ B.– C.× D.÷10.下列所述圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.線段 B.等邊三角形 C.正方形 D.平行四邊形二、填空題(本大題共6個小題,每小題3分,共18分)11.計算:()0﹣=_____.12.若將拋物線y=﹣4(x+2)2﹣3圖象向左平移5個單位,再向上平移3個單位得到的拋物線的頂點坐標是_____.13.如圖,若∠1+∠2=180°,∠3=110°,則∠4=.14.尺規作圖:過直線外一點作已知直線的平行線.已知:如圖,直線l與直線l外一點P.求作:過點P與直線l平行的直線.作法如下:(1)在直線l上任取兩點A、B,連接AP、BP;(2)以點B為圓心,AP長為半徑作弧,以點P為圓心,AB長為半徑作弧,如圖所示,兩弧相交于點M;(3)過點P、M作直線;(4)直線PM即為所求.請回答:PM平行于l的依據是_____.15.在△ABC中,∠BAC=45°,∠ACB=75°,分別以A、C為圓心,以大于AC的長為半徑畫弧,兩弧交于F、G作直線FG,分別交AB,AC于點D、E,若AC的長為4,則BC的長為_____.16.如果點P1(2,y1)、P2(3,y2)在拋物線上,那么y1______y2.(填“>”,“<”或“=”).三、解答題(共8題,共72分)17.(8分)關于x的一元二次方程ax2+bx+1=1.當b=a+2時,利用根的判別式判斷方程根的情況;若方程有兩個相等的實數根,寫出一組滿足條件的a,b的值,并求此時方程的根.18.(8分)某射擊隊教練為了了解隊員訓練情況,從隊員中選取甲、乙兩名隊員進行射擊測試,相同條件下各射靶5次,成績統計如下:命中環數678910甲命中相應環數的次數01310乙命中相應環數的次數20021(1)根據上述信息可知:甲命中環數的中位數是_____環,乙命中環數的眾數是______環;

(2)試通過計算說明甲、乙兩人的成績誰比較穩定?

(3)如果乙再射擊1次,命中8環,那么乙射擊成績的方差會變小.(填“變大”、“變小”或“不變”)19.(8分)關于的一元二次方程有實數根.求的取值范圍;如果是符合條件的最大整數,且一元二次方程與方程有一個相同的根,求此時的值.20.(8分)有一項工作,由甲、乙合作完成,合作一段時間后,乙改進了技術,提高了工作效率.圖①表示甲、乙合作完成的工作量y(件)與工作時間t(時)的函數圖象.圖②分別表示甲完成的工作量y甲(件)、乙完成的工作量y乙(件)與工作時間t(時)的函數圖象.(1)求甲5時完成的工作量;(2)求y甲、y乙與t的函數關系式(寫出自變量t的取值范圍);(3)求乙提高工作效率后,再工作幾個小時與甲完成的工作量相等?21.(8分)已知拋物線過點,,求拋物線的解析式,并求出拋物線的頂點坐標.22.(10分)如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC的長為0.60m,底座BC與支架AC所成的角∠ACB=75°,點A、H、F在同一條直線上,支架AH段的長為1m,HF段的長為1.50m,籃板底部支架HE的長為0.75m.求籃板底部支架HE與支架AF所成的角∠FHE的度數.求籃板頂端F到地面的距離.(結果精確到0.1m;參考數據:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)23.(12分)某校開展“我最喜愛的一項體育活動”調查,要求每名學生必選且只能選一項,現隨機抽查了m名學生,并將其結果繪制成如下不完整的條形圖和扇形圖.請結合以上信息解答下列問題:(1)m=;(2)請補全上面的條形統計圖;(3)在圖2中,“乒乓球”所對應扇形的圓心角的度數為;(4)已知該校共有1200名學生,請你估計該校約有名學生最喜愛足球活動.24.如圖,已知點在反比例函數的圖象上,過點作軸,垂足為,直線經過點,與軸交于點,且,.求反比例函數和一次函數的表達式;直接寫出關于的不等式的解集.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解題分析】試題分析:根據眾數、平均數、中位數、方差:一組數據中出現次數最多的數據叫做這組數據的眾數.將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數;如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.平均數是指在一組數據中所有數據之和再除以數據的個數.一般地設n個數據,x1,x2,…xn的平均數為,則方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].數據:3,4,5,6,6,6,中位數是5.5,故選C考點:1、方差;2、平均數;3、中位數;4、眾數2、B【解題分析】

根據平行線的性質可得到兩組對應角相等,易得解題步驟;【題目詳解】證明:,,又,,∽.故選B.【題目點撥】本題考查了相似三角形的判定與性質;關鍵是證明三角形相似.3、A【解題分析】分析:根據分母不為零,可得答案詳解:由題意,得,解得故選A.點睛:本題考查了分式有意義的條件,利用分母不為零得出不等式是解題關鍵.4、C【解題分析】試題分析:根據反比例函數的性質,再結合函數的圖象即可解答本題.解:根據反比例函數的性質和圖象顯示可知:此函數為減函數,x≥-1時,在第三象限內y的取值范圍是y≤-1;在第一象限內y的取值范圍是y>1.故選C.考點:本題考查了反比例函數的性質點評:此類試題屬于難度一般的試題,考生在解答此類試題時一定要注意分析反比例函數的基本性質和知識,反比例函數y=的圖象是雙曲線,當k>1時,圖象在一、三象限,在每個象限內y隨x的增大而減小;當k<1時,圖象在二、四象限,在每個象限內,y隨x的增大而增大5、C【解題分析】①根據圖象知道:a<1,c>1,∴ac<1,故①正確;②∵頂點坐標為(1/2,1),∴x="-b/2a"="1/2",∴a+b=1,故②正確;③根據圖象知道:x=1時,y=a++b+c>1,故③錯誤;④∵頂點坐標為(1/2,1),∴4ac-b24a其中正確的是①②④.故選C6、B【解題分析】

原式利用減法法則變形,計算即可求出值.【題目詳解】,故選:B.【題目點撥】本題主要考查了有理數的加減,熟練掌握有理數加減的運算法則是解決本題的關鍵.7、D【解題分析】

根據平方根的運算法則和冪的運算法則進行計算,選出正確答案.【題目詳解】,A選項錯誤;(﹣a2)3=-a6,B錯誤;,C錯誤;.6a2×2a=12a3,D正確;故選:D.【題目點撥】本題考查學生對平方根及冪運算的能力的考查,熟練掌握平方根運算和冪運算法則是解答本題的關鍵.8、A【解題分析】

一一對應即可.【題目詳解】最左邊有一個,中間有兩個,最右邊有三個,所以選A.【題目點撥】理解立體幾何的概念是解題的關鍵.9、D【解題分析】

根據有理數的除法可以解答本題.【題目詳解】解:∵(﹣5)÷5=﹣1,∴等式(﹣5)□5=﹣1成立,則□內的運算符號為÷,故選D.【題目點撥】考查有理數的混合運算,解答本題的關鍵是明確有理數的混合運算的計算方法.10、B【解題分析】

根據中心對稱圖形和軸對稱圖形的概念對各選項分析判斷即可得解.【題目詳解】解:A、線段,是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意;

B、等邊三角形,是軸對稱圖形但不是中心對稱圖形,故本選項符合題意;

C、正方形,是軸對稱圖形,也是中心對稱圖形,故本選項不符合題意;

D、平行四邊形,不是軸對稱圖形,是中心對稱圖形,故本選項不符合題意.

故選:B.【題目點撥】本題考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.二、填空題(本大題共6個小題,每小題3分,共18分)11、-1【解題分析】

本題需要運用零次冪的運算法則、立方根的運算法則進行計算.【題目詳解】由分析可得:()0﹣=1-2=﹣1.【題目點撥】熟練運用零次冪的運算法則、立方根的運算法則是本題解題的關鍵.12、(﹣7,0)【解題分析】

直接利用平移規律“左加右減,上加下減”得出平移后的解析式進而得出答案.【題目詳解】∵將拋物線y=-4(x+2)2-3圖象向左平移5個單位,再向上平移3個單位,∴平移后的解析式為:y=-4(x+7)2,故得到的拋物線的頂點坐標是:(-7,0).故答案為(-7,0).【題目點撥】此題主要考查了二次函數與幾何變換,正確掌握平移規律是解題關鍵.13、110°.【解題分析】

解:∵∠1+∠2=180°,∴a∥b,∴∠3=∠4,又∵∠3=110°,∴∠4=110°.故答案為110°.14、兩組對邊分別相等的四邊形是平行四邊形;平行四邊形對邊平行;兩點確定一條直線.【解題分析】

利用畫法得到PM=AB,BM=PA,則利用平行四邊形的判定方法判斷四邊形ABMP為平行四邊形,然后根據2平行四邊形的性質得到PM∥AB.【題目詳解】解:由作法得PM=AB,BM=PA,∴四邊形ABMP為平行四邊形,∴PM∥AB.故答案為:兩組對邊分別相等的四邊形是平行四邊形;平行四邊形對邊平行;兩點確定一條直線.【題目點撥】本題考查基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).也考查了平行四邊形的判定與性質.15、【解題分析】

連接CD在根據垂直平分線的性質可得到△ADC為等腰直角三角形,結合已知的即可得到∠BCD的大小,然后就可以解答出此題【題目詳解】解:連接CD,∵DE垂直平分AC,∴AD=CD,∴∠DCA=∠BAC=45°,∴△ADC是等腰直角三角形,∴,∠ADC=90°,∴∠BDC=90°,∵∠ACB=75°,∴∠BCD=30°,∴BC=,故答案為.【題目點撥】此題主要考查垂直平分線的性質,解題關鍵在于連接CD利用垂直平分線的性質證明△ADC為等腰直角三角形16、>【解題分析】分析:首先求得拋物線y=﹣x2+2x的對稱軸是x=1,利用二次函數的性質,點M、N在對稱軸的右側,y隨著x的增大而減小,得出答案即可.詳解:拋物線y=﹣x2+2x的對稱軸是x=﹣=1.∵a=﹣1<0,拋物線開口向下,1<2<3,∴y1>y2.故答案為>.點睛:本題考查了二次函數圖象上點的坐標特征,二次函數的性質,求得對稱軸,掌握二次函數圖象的性質解決問題.三、解答題(共8題,共72分)17、(2)方程有兩個不相等的實數根;(2)b=-2,a=2時,x2=x2=﹣2.【解題分析】

分析:(2)求出根的判別式,判斷其范圍,即可判斷方程根的情況.(2)方程有兩個相等的實數根,則,寫出一組滿足條件的,的值即可.詳解:(2)解:由題意:.∵,∴原方程有兩個不相等的實數根.(2)答案不唯一,滿足()即可,例如:解:令,,則原方程為,解得:.點睛:考查一元二次方程根的判別式,當時,方程有兩個不相等的實數根.當時,方程有兩個相等的實數根.當時,方程沒有實數根.18、(1)8,6和9;(2)甲的成績比較穩定;(3)變小【解題分析】

(1)根據眾數、中位數的定義求解即可;

(2)根據平均數的定義先求出甲和乙的平均數,再根據方差公式求出甲和乙的方差,然后進行比較,即可得出答案;

(3)根據方差公式進行求解即可.【題目詳解】解:(1)把甲命中環數從小到大排列為7,8,8,8,9,最中間的數是8,則中位數是8;

在乙命中環數中,6和9都出現了2次,出現的次數最多,則乙命中環數的眾數是6和9;

故答案為8,6和9;

(2)甲的平均數是:(7+8+8+8+9)÷5=8,

則甲的方差是:[(7-8)2+3(8-8)2+(9-8)2]=0.4,

乙的平均數是:(6+6+9+9+10)÷5=8,

則甲的方差是:[2(6-8)2+2(9-8)2+(10-8)2]=2.8,

所以甲的成績比較穩定;

(3)如果乙再射擊1次,命中8環,那么乙的射擊成績的方差變小.

故答案為變小.【題目點撥】本題考查了方差:一組數據中各數據與它們的平均數的差的平方的平均數,叫做這組數據的方差.方差通常用s2來表示,計算公式是:s2=[(x1-)2+(x2-)2+…+(xn-)2];方差是反映一組數據的波動大小的一個量.方差越大,則平均值的離散程度越大,穩定性也越小;反之,則它與其平均值的離散程度越小,穩定性越好.也考查了算術平均數、中位數和眾數.19、(1);(2)的值為.【解題分析】

(1)利用判別式的意義得到,然后解不等式即可;(2)利用(1)中的結論得到的最大整數為2,解方程解得,把和分別代入一元二次方程求出對應的,同時滿足.【題目詳解】解:(1)根據題意得,解得;(2)的最大整數為2,方程變形為,解得,∵一元二次方程與方程有一個相同的根,∴當時,,解得;當時,,解得,而,∴的值為.【題目點撥】本題考查了根的判別式:一元二次方程的根與有如下關系:當時,方程有兩個不相等的實數根;當時,方程有兩個相等的實數根;當時,方程無實數根.20、(1)1件;(2)y甲=30t(0≤t≤5);y乙=;(3)小時;【解題分析】

(1)根據圖①可得出總工作量為370件,根據圖②可得出乙完成了220件,從而可得出甲5小時完成的工作量;(2)設y甲的函數解析式為y=kx+b,將點(0,0),(5,1)代入即可得出y甲與t的函數關系式;設y乙的函數解析式為y=mx(0≤t≤2),y=cx+d(2<t≤5),將點的坐標代入即可得出函數解析式;(3)聯立y甲與改進后y乙的函數解析式即可得出答案.【題目詳解】(1)由圖①得,總工作量為370件,由圖②可得出乙完成了220件,故甲5時完成的工作量是1.(2)設y甲的函數解析式為y=kt(k≠0),把點(5,1)代入可得:k=30故y甲=30t(0≤t≤5);乙改進前,甲乙每小時完成50件,所以乙每小時完成20件,當0≤t≤2時,可得y乙=20t;當2<t≤5時,設y=ct+d,將點(2,40),(5,220)代入可得:,解得:,故y乙=60t﹣80(2<t≤5).綜上可得:y甲=30t(0≤t≤5);y乙=.(3)由題意得:,解得:t=,故改進后﹣2=小時后乙與甲完成的工作量相等.【題目點撥】本題考查了一次函數的應用,解題的關鍵是能讀懂函數圖象所表示的信息,另外要熟練掌握待定系數法求函數解析式的知識.21、y=+2x;(-1,-1).【解題分析】試題分析:首先將兩點代入解析式列出關于b和c的二元一次方程組,然后求出b和c的值,然后將拋物線配方成頂點式,求出頂點坐標.試題解析:將點(0,0)和(1,3)代入解析式得:解得:∴拋物線的解析式為y=+2x∴y=+2x=-1∴頂點坐標為(-1,-1).考點:待定系數法求函數解析式.22、(1)∠FHE=60°;(2)籃板頂端F到地面的距離是4.4米.【解題分析】

(1)直接利用銳角三角函數關系得出cos∠FHE=,進而得出答案;(2)延長FE交CB的延長線于M,過A作AG⊥FM于G,解直角三角形即可得到結論.【題目詳解】(1)由題意可得:cos∠FHE=,則∠FHE=60°;(2)延長FE交CB的延長線于M,過A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC?tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=,∴sin6

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論