初中數學因式分解教案_第1頁
初中數學因式分解教案_第2頁
初中數學因式分解教案_第3頁
初中數學因式分解教案_第4頁
初中數學因式分解教案_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

初中數學因式分解教案初中數學因式分解教案1

教學目標

1、知識與技能

了解因式分解的意義,以及它與整式乘法的關系。

2、過程與方法

經歷從分解因數到分解因式的類比過程,掌握因式分解的概念,感受因式分解在解決問題中的`作用。

3、情感、態(tài)度與價值觀

在探索因式分解的方法的活動中,培養(yǎng)學生有條理的思考、表達與交流的能力,培養(yǎng)積極的進取意識,體會數學知識的內在含義與價值。

重、難點與關鍵

1、重點:了解因式分解的意義,感受其作用。

2、難點:整式乘法與因式分解之間的關系。

3、關鍵:通過分解因數引入到分解因式,并進行類比,加深理解。

教學方法

采用“激趣導學”的教學方法。

教學過程

一、創(chuàng)設情境,激趣導入

【問題牽引】

請同學們探究下面的2個問題:

問題1:720能被哪些數整除?談談你的想法。

問題2:當a=102,b=98時,求a2—b2的值。

二、豐富聯(lián)想,展示思維

探索:你會做下面的填空嗎?

1、ma+mb+mc=()();

2、x2—4=()();

3、x2—2xy+y2=()2。

【師生共識】把一個多項式化成幾個整式的積的形式,叫做把這個多項式因式分解,也叫做分解因式。

三、小組活動,共同探究

【問題牽引】

(1)下列各式從左到右的變形是否為因式分解:

①(x+1)(x—1)=x2—1;

②a2—1+b2=(a+1)(a—1)+b2;

③7x—7=7(x—1)。

(2)在下列括號里,填上適當的項,使等式成立。

①9x2(xxxxxx)+y2=(3x+y)(xxxxxxx);

②x2—4xy+(xxxxxxx)=(x—xxxxxxx)2。

四、隨堂練習,鞏固深化

課本練習。

【探研時空】計算:993—99能被100整除嗎?

五、課堂總結,發(fā)展?jié)撃?/p>

由學生自己進行小結,教師提出如下綱目:

1、什么叫因式分解?

2、因式分解與整式運算有何區(qū)別?

六、布置作業(yè),專題突破

選用補充作業(yè)。

板書設計

初中數學因式分解教案2

一、教學目標

【知識與技能】

了解運用公式法分解因式的意義,會用平方差分解因式;知道提公因式法分解因式是首先考慮的方法,再考慮用平方差分解因式。

【過程與方法】

通過對平方差特點的辨析,培養(yǎng)觀察、分析能力,訓練對平方差公式的應用能力。

【情感態(tài)度價值觀】

在逆用乘法公式的過程中,培養(yǎng)逆向思維能力,在分解因式時了解換元的.思想方法。

二、教學重難點

【教學重點】

運用平方差公式分解因式。

【教學難點】

靈活運用公式法或已經學過的提公因式法分解因式;正確判斷因式分解的徹底性。

三、教學過程

(一)引入新課

我們學習了因式分解的定義,還學習了提公因式法分解因式。如果一個多項式的各項,不具備相同的因式,是否就不能分解因式了呢?當然不是,大家知道因式分解與多項式乘法是互逆關系,能否利用這種關系找到新的因式分解的方法呢?

大家先觀察下列式子:

(1)(x+5)(x-5)=,(2)(3x+y)(3x-y)=,(3)(1+3a)(1-13a)=

他們有什么共同的特點?你可以得出什么結論?

(二)探索新知

學生獨立思考或者與同桌討論。

引導學生得出:①有兩項組成,②兩項的符號相反,③兩項都可以寫成數或式的平方的形式。

提問1:能否用語言以及數學公式將其特征表述出來?

初中數學因式分解教案3

整式乘除與因式分解

一.回顧知識點

1、主要知識回顧:

冪的運算性質:

aman=am+n(m、n為正整數)

同底數冪相乘,底數不變,指數相加.

=amn(m、n為正整數)

冪的乘方,底數不變,指數相乘.

(n為正整數)

積的乘方等于各因式乘方的積.

=am-n(a≠0,m、n都是正整數,且m>n)

同底數冪相除,底數不變,指數相減.

零指數冪的概念:

a0=1(a≠0)

任何一個不等于零的數的零指數冪都等于l.

負指數冪的概念:

a-p=(a≠0,p是正整數)

任何一個不等于零的數的-p(p是正整數)指數冪,等于這個數的p指數冪的倒數.

也可表示為:(m≠0,n≠0,p為正整數)

單項式的乘法法則:

單項式相乘,把系數、同底數冪分別相乘,作為積的因式;對于只在一個單項式里含有的字母,則連同它的指數作為積的一個因式.

單項式與多項式的乘法法則:

單項式與多項式相乘,用單項式和多項式的每一項分別相乘,再把所得的積相加.

多項式與多項式的乘法法則:

多項式與多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加.

單項式的除法法則:

單項式相除,把系數、同底數冪分別相除,作為商的因式:對于只在被除式里含有的字母,則連同它的指數作為商的一個因式.

多項式除以單項式的法則:

多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加.

2、乘法公式:

①平方差公式:(a+b)(a-b)=a2-b2

文字語言敘述:兩個數的和與這兩個數的差相乘,等于這兩個數的平方差.

②完全平方公式:(a+b)2=a2+2ab+b2

(a-b)2=a2-2ab+b2

文字語言敘述:兩個數的和(或差)的'平方等于這兩個數的平方和加上(或減去)這兩個數的積的2倍.

3、因式分解:

因式分解的定義.

把一個多項式化成幾個整式的乘積的形式,這種變形叫做把這個多項式因式分解.

掌握其定義應注意以下幾點:

(1)分解對象是多項式,分解結果必須是積的形式,且積的因式必須是整式,這三個要素缺一不可;

(2)因式分解必須是恒等變形;

(3)因式分解必須分解到每個因式都不能分解為止.

弄清因式分解與整式乘法的內在的關系.

因式分解與整式乘法是互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差的形式.

二、熟練掌握因式分解的常用方法.

1、提公因式法

(1)掌握提公因式法的概念;

(2)提公因式法的關鍵是找出公因式,公因式的構成一般情況下有三部分:①系數一各項系數的最大公約數;②字母——各項含有的相同字母;③指數——相同字母的最低次數;

(3)提公因式法的步驟:第一步是找出公因式;第二步是提取公因式并確定另一因式.需注意的是,提取完公因式后,另一個因式的項數與原多項式的項數一致,這一點可用來檢驗是否漏項.

(4)注意點:①提取公因式后各因式應該是最簡形式,即分解到“底”;②如果多項式的第一項的系數是負的,一般要提出“-”號,使括號內的第一項的系數是正的.

2、公式法

運用公式法分解因式的實質是把整式中的乘法公式反過來使用;

常用的公式:

①平方差公式:a2-b2=(a+b)(a-b)

②完全平方公式:a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

初中數學因式分解教案4

教學目標

1、知識與技能

會應用平方差公式進行因式分解,發(fā)展學生推理能力。

2、過程與方法

經歷探索利用平方差公式進行因式分解的過程,發(fā)展學生的逆向思維,感受數學知識的完整性。

3、情感、態(tài)度與價值觀

培養(yǎng)學生良好的互動交流的習慣,體會數學在實際問題中的應用價值。

重、難點與關鍵

1、重點:利用平方差公式分解因式。

2、難點:領會因式分解的解題步驟和分解因式的徹底性。

3、關鍵:應用逆向思維的方向,演繹出平方差公式,對公式的應用首先要注意其特征,其次要做好式的變形,把問題轉化成能夠應用公式的.方面上來。

教學方法

采用“問題解決”的教學方法,讓學生在問題的牽引下,推進自己的思維。

教學過程

一、觀察探討,體驗新知

【問題牽引】

請同學們計算下列各式。

(1)(a+5)(a—5);(2)(4m+3n)(4m—3n)。

【學生活動】動筆計算出上面的兩道題,并踴躍上臺板演。

(1)(a+5)(a—5)=a2—52=a2—25;

(2)(4m+3n)(4m—3n)=(4m)2—(3n)2=16m2—9n2。

【教師活動】引導學生完成下面的兩道題目,并運用數學“互逆”的思想,尋找因式分解的規(guī)律。

1、分解因式:a2—25;2、分解因式16m2—9n。

【學生活動】從逆向思維入手,很快得到下面答案:

(1)a2—25=a2—52=(a+5)(a—5)。

(2)16m2—9n2=(4m)2—(3n)2=(4m+3n)(4m—3n)。

【教師活動】引導學生完成a2—b2=(a+b)(a—b)的同時,導出課題:用平方差公式因式分解。

平方差公式:a2—b2=(a+b)(a—b)。

評析:平方差公式中的字母a、b,教學中還要強調一下,可以表示數、含字母的代數式(單項式、多項式)。

二、范例學習,應用所學

【例1】把下列各式分解因式:(投影顯示或板書)

(1)x2—9y2;(2)16x4—y4;

(3)12a2x2—27b2y2;(4)(x+2y)2—(x—3y)2;

(5)m2(16x—y)+n2(y—16x)。

【思路點撥】在觀察中發(fā)現1~5題均滿足平方差公式的特征,可以使用平方差公式因式分解。

【教師活動】啟發(fā)學生從平方差公式的角度進行因式分解,請5位學生上講臺板演。

【學生活動】分四人小組,合作探究。

解:(1)x2—9y2=(x+3y)(x—3y);

(2)16x4—y4=(4x2+y2)(4x2—y2)=(4x2+y2)(2x+y)(2x—y);

(3)12a2x2—27b2y2=3(4a2x2—9b2y2)=3(2ax+3by)(2ax—3by);

(4)(x+2y)2—(x—3y)2=[(x+2y)+(x—3y)][(x+2y)—(x—3y)]=5y(2x—y);

(5)m2(16x—y)+n2(y—16x)

=(16x—y)(m2—n2)=(16x—y)(m+n)(m—n)。

初中數學因式分解教案5

知識點:

因式分解定義,提取公因式、應用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。

教學目標:

理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。

考查重難點與常見題型:

考查因式分解能力,在中考試題中,因式分解出現的.頻率很高。重點考查的分式提取公因式、應用公式法、分組分解法及它們的綜合運用。習題類型以填空題為多,也有選擇題和解答題。

教學過程:

因式分解知識點

多項式的因式分解,就是把一個多項式化為幾個整式的積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:

(1)提公因式法

如多項式

其中m叫做這個多項式各項的公因式,m既可以是一個單項式,也可以是一個多項式。

(2)運用公式法,即用

寫出結果。

(3)十字相乘法

對于二次項系數為l的二次三項式尋找滿足ab=q,a+b=p的a,b,如有,則對于一般的二次三項式尋找滿足

a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則

(4)分組分解法:把各項適當分組,先使分解因式能分組進行,再使分解因式在各組之間進行。

分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。

(5)求根公式法:如果有兩個根X1,X2,那么

2、教學實例:學案示例

3、課堂練習:學案作業(yè)

4、課堂:

5、板書:

6、課堂作業(yè):學案作業(yè)

7、教學反思:

初中數學因式分解教案6

學習目標

1、了解因式分解的意義以及它與正式乘法的關系。

2、能確定多項式各項的公因式,會用提公因式法分解因式。

學習重點:

能用提公因式法分解因式。

學習難點:

確定因式的公因式。

學習關鍵:

在確定多項式各項公因式時,應抓住各項的公因式來提公因式。

學習過程

一.知識回顧

1、計算

(1)、n(n+1)(n-1)(2)、(a+1)(a-2)

(3)、m(a+b)(4)、2ab(x-2y+1)

二、自主學習

1、閱讀課文P72-73的內容,并回答問題:

(1)知識點一:把一個多項式化為幾個整式的xxxxxxxxxx的形式叫做xxxxxxxxxxxx,也叫做把這個多項式xxxxxxxxxx。

(2)、知識點二:由m(a+b+c)=ma+mb+mc可得

ma+mb+mc=m(a+b+c)

我們來分析一下多項式ma+mb+mc的特點;它的每一項都含有一個相同的因式m,m叫做各項的xxxxxxxxx。如果把這個xxxxxxxxx提到括號外面,這樣

ma+mb+mc就分解成兩個因式的積m(a+b+c),即ma+mb+mc=m(a+b+c)。這種xxxxxxxx的方法叫做xxxxxxxx。

2、練一練。P73練習第1題。

三、合作探究

1、(1)m(a-b)=ma-mb(2)a(x-y+2)=ax-ay+2a,由上可知,整式乘法是一種變形,左邊是幾個整式乘積形式,右邊是一個多項式。、

2、(1)ma-mb=m(a-b)(2)ax-ay+2a=a(x-y+2),由此可知,因式分解也是一種變形,左邊是xxxxxxxxxxxxx,右邊是xxxxxxxxxxxxx。

3、下列是由左到右的變形,哪些屬于整式乘法,哪些屬于因式分解?

(1)(a+b)(a-b)=a-

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論